首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observation and analysis of large-scale human motion   总被引:2,自引:0,他引:2  
Many team sports include complex human movement, which can be observed at different levels of detail. Some aspects of the athlete's motion can be studied in detail using commercially available high-speed, high-accuracy biomechanical measurement systems. However, due to their limitations, these devices are not appropriate for studying large-scale motion during a game (for example, the motion of a player running across the entire playing field). We describe an alternative approach to studying such large-scale motion, and present a video-based, computer-aided system, developed specifically for the purpose of acquiring large-scale motion data. The baseline of our approach consists of sacrificing much of the spatial accuracy and temporal resolution of widely used biomechanical measurement systems, to obtain data on human movement that span large areas and long intervals of time. Data can be obtained for each of the observed athletes with reasonable amount of operator work. The system was developed using the recordings of a handball match. Several field tests were performed to assess measurement error, including comparison to one of the widely available biomechanical measurement systems. With the help of the system presented, we could obtain position data for all 14 handball players on a 40 x 20 m large court with RMS error better than 0.6 m, covering 1 h of action. Several results, obtained during the handball match study are presented, in order to highlight the importance of large-scale motion acquisition.  相似文献   

2.
In sport science, as in clinical gait analysis, optoelectronic motion capture systems based on passive markers are widely used to recover human movement. By processing the corresponding image points, as recorded by multiple cameras, the human kinematics is resolved through multistage processing involving spatial reconstruction, trajectory tracking, joint angle determination, and derivative computation. Key problems with this approach are that marker data can be indistinct, occluded or missing from certain cameras, that phantom markers may be present, and that both 3D reconstruction and tracking may fail. In this paper, we present a novel technique, based on state space filters, that directly estimates the kinematical variables of a virtual mannequin (biomechanical model) from 2D measurements, that is, without requiring 3D reconstruction and tracking. Using Kalman filters, the configuration of the model in terms of joint angles, first and second order derivatives is automatically updated in order to minimize the distances, as measured on TV-cameras, between the 2D measured markers placed on the subject and the corresponding back-projected virtual markers located on the model. The Jacobian and Hessian matrices of the nonlinear observation function are computed through a multidimensional extension of Stirling's interpolation formula. Extensive experiments on simulated and real data confirmed the reliability of the developed system that is robust against false matching and severe marker occlusions. In addition, we show how the proposed technique can be extended to account for skin artifacts and model inaccuracy.  相似文献   

3.
The authors of this article suggest that the slight but consistent posture-dependent curvature of the spatial paths in the kinematic transformation between intrinsic and extrinsic coordinates may result in a systematic curvature of movements initially planned as straight-line trajectories toward the target. A kinematic planning model is presented that takes into account the anisotropy of the intrinsic and extrinsic transformation and tends to avoid movements that require excessive joint rotations by introducing slight deviations from a straight-line trajectory. Preliminary simulations showed reasonably good agreement with experimental data, especially considering that the current model is strictly based on kinematics. A quantitative analysis showed that the strategy used in the model achieves a favorable compromise between straight-line movements and angular joint changes: By slightly increasing the spatial length of the movement (i.e., by introducing curvature), an individual can greatly reduce the total amount of joint rotation required to produce the movement.  相似文献   

4.
This article reports an experimental study that aimed to quantitatively analyze motion coordination patterns across digits 2-5 (index to little finger), and examine the kinematic synergies during manipulative and gestic acts. Twenty-eight subjects (14 males and 14 females) performed two types of tasks, both right-handed: (1) cylinder-grasping that involved concurrent voluntary flexion of digits 2-5, and (2) voluntary flexion of individual fingers from digit 2 to 5 (i.e., one at a time). A five-camera opto-electronic motion capture system measured trajectories of 21 miniature reflective markers strategically placed on the dorsal surface landmarks of the hand. Joint angular profiles for 12 involved flexion-extension degrees of freedom (DOF's) were derived from the measured coordinates of surface markers. Principal components analysis (PCA) was used to examine the temporal covariation between joint angles. A mathematical modeling procedure, based on hyperbolic tangent functions, characterized the sigmoidal shaped angular profiles with four kinematically meaningful parameters. The PCA results showed that for all the movement trials (n = 280), two principal components accounted for at least 98% of the variance. The angular profiles (n = 2464) were accurately characterized, with the mean (+/-SD) coefficient of determination (R2) and root-mean-square-error (RMSE) being 0.95 (+/-0.12) and 1.03 degrees (+/-0.82 degrees ), respectively. The resulting parameters which quantified both the spatial and temporal aspects of angular profiles revealed stereotypical patterns including a predominant (87% of all trials) proximal-to-distal flexion sequence and characteristic interdependence--involuntary joint flexion induced by the voluntarily flexed joint. The principal components' weights and the kinematic parameters also exhibited qualitatively similar variation patterns. Motor control interpretations and new insights regarding the underlying synergistic mechanisms, particularly in relation to previous findings on force synergies, are discussed.  相似文献   

5.
The objective of this study is to simulate the dynamic response of the human body within a rear-end impacted vehicle. A nonlinear mathematical model of a human body and a restraint system has been formulated. The model consists of connected rigid bodies representing the torso and limbs of the human frame. Nonlinear springs and dampers are used at the connection joints to represent human anatomical characteristics and limits imposed by muscles, ligaments, and soft tissue. Equations of motion are written for this model by using Kane's equation and multibody dynamics analysis procedures developed by Huston. The equations are integrated numerically for a number of specific cases where experimental data are available. Results show excellent agreement between the model and the experiments. The results of several accident simulations are also presented.  相似文献   

6.
To record three-dimensional coordinates of the joints from normal human subjects during locomotion, we used a digital motion analysis system (ELITE). Recordings were obtained under several different conditions, which included normal walking and stepping over obstacles. Principal component analysis was used to analyze coordinate data after conversion of the data to segmental angles. This technique gave a stable summary of the redundancy in gait kinematic data in the form of reduced variables (principal components). By modeling the shapes of the phase plots of reduced variables (distortion analysis) and using a limited number of model parameters, good resolution was obtained between subtly different conditions. Hence, it was possible to accurately resolve small distributed changes in gait patterns within subjects. These methods seem particularly suited to longitudinal studies in which relevant movement features are not known a priori. Assumptions and neurophysiological applications are discussed.  相似文献   

7.
Due to the redundant degrees of freedom (DOF) and nonlinearity of reactional kinetic elements within the human motor apparatus, controlling the complex dynamics of the human musculoskeletal system presents considerable difficulties. Based on this challenge, Bernstein (1967) viewed skill development as the process whereby the central nervous system (CNS) gains mastery of kinematic DOF and kinetic reactional elements (passive forces, moments etc.), with the highest level of skill characterised by optimal exploitation of reactional elements in the achievement of movement goals. A previous kinematic investigation into coordination differences in a complex multidirectional dance sequence demonstrated that general unfreezing of kinematic DOF occurred as dance skill progressed (Chang et al., submitted for publication). To gain insight into the role of angular reactional elements in skill, the present kinetic study investigated angular momentum and associated variables across three skill levels (beginners, intermediates, experts) within this same complex dance sequence. The results showed that the angular momenta of segments and accompanying angular reactional elements generally increased with skill level. More specifically, the findings suggested that while improvements in movement economy from cancellation of angular momentum between body segments occur early in skill progression, later in skill progression, experts utilise increased whole-body angular momentum. Although this is energetically expensive, it may enhance the aesthetic value of dance movements, and/or have mechanical advantages. Overall, the findings here provide support for Bernstein’s (1967) model of skill development. Future research should quantify the relations between energy expenditure, key biomechanical variables that reflect skill and dance aesthetics as perceived by audiences.  相似文献   

8.
A computational procedure (program) is defined to generate control signals for the motoneuron pools of agonist and antagonist muscles that will move a limb segment from one stationary position to another. The program accounts for the ability to move different distances with different inertial loads and for the influence of instructions concerning movement speed and accuracy. These motor commands allow the program to produce EMG patterns as well as force and kinematic trajectories that are consistent with much of the data found in the literature of these movements. The program is premised on the notion that kinematically defined tasks are accomplished by programming commands to the motoneuron pools, based on only a few cognitively recognized kinematic and dynamic features of the task. Most of the features found in EMG and kinematic patterns can be considered consequences of the program's algorithmic procedures rather than specifically planned features of those movements.  相似文献   

9.
The use of optical tracking systems to record human movement is now widespread. Although such systems are convenient and potentially very accurate, they must be used carefully to ensure good data. This paper describes the procedures of calibration and reconstruction of position data in cartesian coordinates and suggests steps to maximize their accuracy. Procedures are proposed for characterizing the accuracy of measurement throughout the experimental workspace, and open discussion of the issue by the research community is invited.  相似文献   

10.
The vertical excursion of the body center of mass (BCOM) was calculated using three different techniques commonly used by motion analysis laboratories. The sacral marker method involved estimating vertical BCOM motion by tracking the position of a reflective marker that was placed on the sacrum of subjects as they walked. The body segmental analysis technique determined the vertical motion of the BCOM from a weighted average of the vertical positions of the centers of mass of individual body segments for each frame of kinematic data acquired during the data trial. Anthropomorphic data from standard tables were used to determine the mass fractions and the locations of the centers of mass of each body segment. The third technique involved calculating BCOM vertical motion through double integration of force platform data. Data was acquired from 10 able-bodied, adult research subjects--5 males and 5 females--walking at speeds of 0.8, 1.2, 1.6, and 2.0 m/s. A repeated measures ANOVA indicated that at the slowest walking speed the vertical excursions calculated by all three techniques were similar, but at faster speeds the sacral marker significantly (p < 0.001) overestimated the vertical excursion of the BCOM compared with the other two methods. The body segmental analysis and force platform techniques were in agreement at all walking speeds. Discrepancies between the sacral marker method and the other two techniques were explained using a simple model; the reciprocal configuration of the legs during double support phase significantly raises the position of the BCOM within the trunk at longer step lengths, corresponding to faster walking speeds. The sacral marker method may provide a reasonable approximation of vertical BCOM motion at slow and freely selected speeds of able-bodied walking. However, the body segmental analysis or force platform techniques will probably yield better estimates at faster walking speeds or in persons with gait pathologies.  相似文献   

11.
In this paper, we studied spontaneous newborn movements regarding the coordination of the four limbs, arms and legs, from a dynamic perspective. We used the method of recurrence plots to analyse the kinematic data from audiovisual recordings of neonates. We identified temporal and spatial synchronization of the four limbs that resulted in high recurrence patterns of biomechanical reference configurations. Furthermore, we identified transitions between linear and nonlinear epochs in the movement behavior of newborns on different time scales by means of recurrence quantification analysis. Results are discussed in the context of the concept of a structural hierarchy, in which different time scales correspond to hierarchical levels of organization.  相似文献   

12.
Infant treadmill steps have many temporal and kinematic similarities to adult walking. Kinematic similarities can result from different patterns of underlying torque, however. In this study, we used inverse dynamics to compare the patterns and contributions of active (muscle) and passive (gravity and motion-dependent) torques in the swing phase of treadmill stepping in 7-month-old infants and adults. Results indicated that adults consistently used muscle torque to initiate and terminate swing, but that passive torques accounted for leg motion during most of the swing phase. Infants, in contrast, displayed multiple patterns of torque contributions during swing. In the most frequently occurring infant pattern, muscle torque remained flexor throughout swing and joint reversals were due to the dominant passive gravitational torque. The kinetic data suggest that the temporally and kinematically similar treadmill steps produced by adults and infants do not emanate from a unique set of neural commands to the muscles, but from a flexible interplay between multiple internal as well as external elements. These data suggest that the intrinsic dynamics of the human system provide a medium out of which, given a supportive context, stable patterns can emerge spontaneously. During development, voluntary controlled movement patterns must build on these intrinsic dynamics.  相似文献   

13.
Previous research into running has demonstrated consistent patterns in pelvic, lumbar and thoracic motions between different human runners. However, to date, there has been limited attempt to explain why observed coordination patterns emerge and how they may relate to centre of mass (CoM) motion. In this study, kinematic data were collected from the thorax, lumbar spine, pelvis and lower limbs during over ground running in n = 28 participants. These data was subsequently used to develop a theoretical understanding of the coordination of the spine and pelvis in all three body planes during the stance phase of running. In the sagittal plane, there appeared to be an antiphase coordinate pattern which may function to increase femoral inclination at toe off whilst minimising anterior–posterior accelerations of the CoM. In the medio-lateral direction, CoM motion appears to facilitate transition to the contralateral foot. However, an antiphase coordination pattern was also observed, most likely to minimise unnecessary accelerations of the CoM. In the transverse plane, motion of the pelvis was observed to lag slightly behind that of the thorax. However, it is possible that the close coupling between these two segments facilitates the thoracic rotation required to passively drive arm motion. This is the first study to provide a full biomechanical rationale for the coordination of the spine and pelvis during human running. This insight should help clinicians develop an improved understanding of how spinal and pelvic motions may contribute to, or result from, common running injuries.  相似文献   

14.
In the present paper, we describe a method for recording the coordinates of a fish in an aquarium in a three-dimensional space, using a single video camera and a mirror. We use photogrammetic equations for this, considering the image obtained in the mirror as a virtual image obtained by a second camera. A transformation of the coordinate system is required to express the obtained coordinates in anx,y,z system defined by the edges of the aquarium. The accuracy of the proposed method was estimated, and errors in extreme conditions were found to be 0.8% to 1.2 %, compared with the dimensions of the aquarium used in the test.  相似文献   

15.

It has been suggested that judgments about the temporal–spatial order of successive tactile stimuli depend on the perceived direction of apparent motion between them. Here we manipulated tactile apparent-motion percepts by presenting a brief, task-irrelevant auditory stimulus temporally in-between pairs of tactile stimuli. The tactile stimuli were applied one to each hand, with varying stimulus onset asynchronies (SOAs). Participants reported the location of the first stimulus (temporal order judgments: TOJs) while adopting both crossed and uncrossed hand postures, so we could scrutinize skin-based, anatomical, and external reference frames. With crossed hands, the sound improved TOJ performance at short (≤300 ms) and at long (>300 ms) SOAs. When the hands were uncrossed, the sound induced a decrease in TOJ performance, but only at short SOAs. A second experiment confirmed that the auditory stimulus indeed modulated tactile apparent motion perception under these conditions. Perceived apparent motion directions were more ambiguous with crossed than with uncrossed hands, probably indicating competing spatial codes in the crossed posture. However, irrespective of posture, the additional sound tended to impair potentially anatomically coded motion direction discrimination at a short SOA of 80 ms, but it significantly enhanced externally coded apparent motion perception at a long SOA of 500 ms. Anatomically coded motion signals imply incorrect TOJ responses with crossed hands, but correct responses when the hands are uncrossed; externally coded motion signals always point toward the correct TOJ response. Thus, taken together, these results suggest that apparent-motion signals are likely taken into account when tactile temporal–spatial information is reconstructed.

  相似文献   

16.
探讨应用鼻声反射测量评估基于CT图像的三维重建人体鼻腔模型的可靠性,并用有限元方法对模型的流场进行数值模拟。基于志愿者CT医学图像,用表面重建的方法对人体鼻腔进行三维重建,并用有限元方法对腔体中气体的流动进行数值模拟及分析;采用鼻声反射仪测试得到志愿者鼻声反射曲线,分别提取并对比两种方法得到的鼻腔多个轴向横截面面积数据。结果显示。两种方法得到的数据有很好的吻合。由此得出结论,所建模型较真实的反映了鼻腔实际解剖结构形态。数值模拟结果可靠,对临床上呼吸道解剖结构与功能相关疾病的诊断、发病机理的深入探讨具有参考价值。  相似文献   

17.
Visible surfaces of three-dimensional objects are reconstructed from two-dimensional retinal images in the early stages of human visual processing. In the computational model of surface reconstruction based on the standard regularization theory, an energy function is minimized. Two types of model have been proposed, called "membrane" and "thin-plate" after their function formulas, in which the first or the second derivative of depth information is used. In this study, the threshold of surface reconstruction from binocular disparity was investigated using a sparse random dot stereogram, and the predictive accuracy of these models was evaluated. It was found that the thin-plate model reconstructed surfaces more accurately than the membrane model and showed good agreement with experimental results. The likelihood that these models imitate human processing of visual information is discussed in terms of the size of receptive fields in the visual pathways of the human cortex.  相似文献   

18.
The device described in this paper measures the spatial coordinates of the fingers of blind readers decoding texts written in braille. A light-emitting diode is fixed onto each of the two reading fingers, and a television camera with a MOS pickup device delivers a signal from which is extracted the information required to deduce the vertical and horizontal coordinates of the fingers. The results of these measurements appear as eight-digit binary numbers available for real-time computer data processing.  相似文献   

19.
Recent studies showed that action observation activates neural circuits used in performing the same action and facilitates execution of a similar motor program. This system for direct mapping of observed actions onto observer’s own motor representation is considered critical for human imitation capabilities. The present study shows that observing a pointing action activates a representation of that action in anatomical space, irrespectively of whether the action is shown in allocentric or egocentric perspective. This finding is at odds with the studies on imitation which showed that humans tend to imitate in a spatially compatible (specular) way, as if looking in a mirror. Our results suggest that shared representations for actions are organized in the same spatial coordinates; however, a transformation of this representation might be required for imitation tasks in order to accommodate the goals of imitative action.  相似文献   

20.
This article presents a tentative theoretical framework for the study of asymmetry in the context of human bimanual action. It is emphasized that in man most skilled manual activities involve two hands playing different roles, a fact that has been often overlooked in the experimental study of human manual lateralization. As an alternative to the current concepts of manual preference and manual superiority-whose relevance is limited to the particular case of unimanual actions-the more general concept of lateral preference is proposed to denote preference for one of the two possible ways of assigning two roles to two hands. A simple model describing man's favored intermanual division of labor in the model are the following. 1) The two hands represent two motors, that is, decomplexity is ignored in the suggested approach. 2) In man, the two manual motors cooperate with one another as if they were assembled in series, thereby forming a kinematic chain: In a right-hander allowed to follow his or her lateral preferences, motion produced by the right hand tends to articulate with motion produced by the left. It is suggested that the kinematic chain model may help in understanding the adaptive advantage of human manual specialization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号