首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysine vasopressin (0.03 microgram/kg, sc) enhanced retention of a one-trial, step-through inhibitory avoidance task when injected into male Swiss mice immediately post-training, as indicated by retention performance 48 h later. A low dose of the vasopressin antagonist, AAVP (0.01 microgram/kg, sc), did not significantly affect retention, whereas a higher dose (0.03 microgram/kg, sc) impaired retention. Neither lysine vasopressin nor AAVP modified latencies to step-through of mice that had not received a footshock during training. The simultaneous injection of AAVP (0.01 microgram/kg, sc) prevented the enhancement of retention induced by lysine vasopressin. The influence of lysine vasopressin on retention was antagonized by the simultaneous administration of mecamylamine (5 mg/kg, sc) but not by hexamethonium (5 mg/kg, sc), atropine (0.5 mg/kg, sc), or methylatropine (0.5 mg/kg, sc). A modulatory role of vasopressin on the activity of central cholinergic nicotinic mechanisms which participate in memory formation is suggested.  相似文献   

2.
Immediate post-training subcutaneous administration of lysine vasopressin (LVP, 0.003-1.00 microgram/kg) enhanced retention, whereas the vasopressin antagonist AAVP (0.01-0.30 microgram/kg) impaired it, in male Swiss mice tested 48 h after training in an inhibitory avoidance task. Both effects were dose-dependent. Neither LVP nor AAVP affected response latencies in mice not given the footshock on the training trial. The simultaneous administration of AAVP at a dose (0.01 microgram/kg) which had no effect on retention shifted the dose-response curve of LVP to the right. Nicotine (1.0-30.0 micrograms/kg, sc), a central nicotinic cholinergic agonist, also facilitated retention in a dose-related manner without affecting the retention performance of unshocked mice. The effect of nicotine was prevented by the central acting nicotinic cholinergic receptor antagonist mecamylamine (5 mg/kg, sc.). In contrast, neither hexamethonium (5 mg/kg, sc), a peripheral acting nicotinic receptor blocker, nor atropine (0.5 mg/kg, sc) or methylatropine (0.5 mg/kg, sc), two anticholinergic drugs which are known to act on muscarinic cholinergic receptors, prevented the effect of post-training nicotine. The effects of LVP and nicotine were time-dependent, suggesting that both treatments enhanced retention by influencing post-training processes involved in memory storage. Low doses of nicotine (1.50 microgram/kg, sc) or the central anticholinesterase physostigmine (35 micrograms/kg, sc) and LVP (0.003 microgram/kg, sc), which had no effect on retention when administered alone, produced a synergistic interaction when given together following training. The influence of LVP (0.03 microgram/kg, sc) on retention was prevented not only by AAVP (0.01 microgram/kg, sc) but also by mecamylamine (5 mg/kg, sc), whereas the effects of nicotine (10.0 micrograms/kg, sc) were prevented only by mecamylamine. These results suggest that the enhancement of retention induced by vasopressin is probably due to an activation of central nicotinic cholinergic mechanisms which are critical for memory formation.  相似文献   

3.
Lysine vasopressin (0.03 micrograms/kg, sc) enhanced retention test performance on a one-trial step-through inhibitory avoidance task when injected into male Swiss mice 20 min before the retention test. Tests were done 48 h following training. A low dose of the vasopressin antagonist AAVP (0.01 microgram/kg, sc, 20 min prior to testing) did not significantly affect retention test performance, whereas a higher dose (0.03 microgram/kg, sc) impaired it. Neither lysine vasopressin nor AAVP when given prior to testing modified latencies to step-through of mice that had not received a footshock during training. The simultaneous administration of AAVP (0.01 microgram/kg, sc) prevented the enhancement of retention test performance induced by lysine vasopressin. The influence of lysine vasopressin on retention test performance was antagonized by the simultaneous administration of mecamylamine (5 mg/kg, sc) but not by hexamethonium (5 mg/kg, sc), atropine (0.5 mg/kg, sc), or methylatropine (0.5 mg/kg, sc). A modulatory role of vasopressin on the activity of central cholinergic nicotinic mechanisms which probably operate at the time of testing is suggested.  相似文献   

4.
Oxytocin (OT, 0.10 microg/kg, sc) impaired retention of a one-trial step-through inhibitory avoidance task when injected into male Swiss mice 10 min after training, as indicated by retention performance 48 h later. In contrast, the immediate post-training administration of the putative oxytocin receptor antagonist d(CH(2))(5)[Tyr(Me)(2), Thr(4), Thy-NH(9)(2)] OVT (AOT, 0.30 microg/kg, sc) significantly enhanced retention performance. Neither OT nor AOT affected response latencies in mice not given footshock on the training trial, and neither the impairing effects of OT nor the enhancing effects of AOT were seen when the training-treatment interval was 180 min, suggesting that both treatments influenced memory storage. The effects of OT (0.10 microg/kg, sc) on retention were prevented by AOT (0.03 microg/kg, sc) given immediately after training, but 10 min prior to OT treatment. The central acting anticholinesterase physostigmine (35, 70, or 150 microg/kg, i.p.), but not its quaternary analogue neostigmine (150 microg/kg, i.p.), reversed the impairment of retention performance induced by OT, whereas low subeffective doses of the centrally active muscarinic cholinergic antagonist atropine (0.5 mg/kg, i.p.) or the central acting nicotinic cholinergic antagonist mecamylamine (5 mg/kg, i.p.), but not methylatropine (0.5 mg/kg, i.p.) or hexamethonium (5 mg/kg, i.p.) prevented the enhancement of retention performance caused by AOT. We suggest that oxytocin negatively modulates the activity of central cholinergic mechanisms during the posttraining period that follows an aversively motivated learning experience, leading to an impairment of retention performance of the inhibitory avoidance response.  相似文献   

5.
Hypertonic saline (1 ml of 0.25, 0.50, and 1.00 M NaCl, ip) facilitated retention of a one-trial, step-through inhibitory avoidance task when injected into male Swiss mice 10 min after training, as indicated by retention performance 48 h later. A similar result was obtained after a subcutaneous injection of lysine vasopressin (LVP, 0.03 microgram/kg). Neither hypertonic saline nor LVP modified latencies to step-through of mice that had not received a footshock during training. The enhancement of retention produced both by hypertonic saline and by LVP was prevented by the vasopressin receptor antagonist AAVP (0.01 microgram/kg, sc) given after training, but 10 min before the treatments. The effect of hypertonic saline was also prevented by the central acting cholinergic nicotinic receptor antagonist mecamylamine (5 mg/kg, sc). On the contrary, neither hexamethonium (5 mg/kg, sc), a peripheral acting nicotinic receptor blocker, nor atropine (0.5 mg/kg, sc) or methylatropine (0.5 mg/kg, sc), two anticholinergic drugs which are known to act on cholinergic muscarinic receptors, prevented the effect of post-training hypertonic saline. These results suggest that a peripheral osmotic stimulus, probably through an endogenous release of vasopressin, may be behaviorally significant, and are consistent with the view that vasopressin may modulate the activity of central cholinergic nicotinic mechanisms which are critical for the behavioral change observed.  相似文献   

6.
Male Swiss mice were allowed to explore a novel environment, provided by an open-field activity chamber for a 10-min period. The procedure was repeated twice within a 24-h interval. The difference in the exploratory activity between the first (training) and the second exposure (testing) to the chamber was taken as an index of retention of this habituation task. Posttraining intraperitoneal administration of insulin (8, 20, or 80 IU/kg) impaired retention in a dose-related manner, although only the dose of 20 IU/kg of insulin produced significant effects. Thus, the dose–response curve adopted a U-shaped form. Insulin (20 IU/kg) given to untrained mice did not modify their exploratory performance when recorded 24 h later. The effects of insulin on retention were time dependent, suggesting an action on memory storage. An ineffective dose (8 IU/kg) of insulin given together with an ineffective dose of a central acting muscarinic cholinergic antagonist atropine (0.5 mg/kg) or with a central acting nicotinic cholinergic antagonist mecamylamine (5 mg/kg) interacted to impair retention. In contrast, neither methylatropine (0.5 mg/kg), a peripherally acting muscarinic receptor blocker, nor hexamethonium (5 mg/kg), a peripherally acting nicotinic receptor blocker, interacted with the subeffective dose of insulin on retention. The impairing effects of insulin (20 IU/kg) on retention were reversed by the simultaneous administration of physostigmine (70 μg/kg) but not neostigmine (70 μg/kg). We suggest that insulin impairs memory storage of one form of learning elicited by stimuli repeatedly presented without reinforcement, probably through a decrement of brain acetylcholine synthesis.  相似文献   

7.
Male Swiss mice were allowed to explore a novel environment, provided by an open-field activity chamber, for 10 min. The procedure was repeated twice with a 24-h interval. The difference in the exploratory activity between the first (training) and the second (testing) exposures to the chamber was taken as an index of retention of this habituation task. Posttraining intraperitoneal administration of glucose (10–300 mg/kg) enhanced retention in a dose-related manner, although only the dose of 30 mg/kg of glucose produced significant effects. Thus, the dose–response curve adopted an inverted U-shaped form. Glucose (30 mg/kg) given to untrained mice did not modify their exploratory performance when recorded 24 h later. The effects of glucose on retention were time-dependent, suggesting an action on memory storage. The memory-improving actions of glucose were prevented by the simultaneous administration of both the central acting muscarinic cholinergic antagonist atropine (0.5 mg/kg) and by the central acting nicotinic cholinergic antagonist mecamylamine (5 mg/kg). In contrast, neither methylatropine (0.5 mg/kg), a peripherally acting muscarinic receptor blocker, nor hexamethonium (5 mg/kg), a peripherally acting nicotinic receptor blocker, prevented the effects of glucose on retention. Low subeffective doses of glucose (10 mg/kg) and the central anticholinesterase physostigmine (35 μg/kg), but not neostigmine (35 μg/kg), given together, act synergistically and facilitated retention. We suggest that glucose modulates memory storage of one form of learning elicited by stimuli repeatedly presented without reinforcement, probably through an enhancement of brain acetylcholine synthesis and/or its release.  相似文献   

8.
Few studies have compared the action of both nicotine (NIC) and bupropion (BUP), an antidepressant used to treat NIC dependence, on social and aggressive behavior at different ages. This study aims to determine whether these drugs produce differential effects in adolescent (postnatal day: 36-37) and adult (postnatal day: 65-66) mice that have been housed individually for 2 weeks in order to induce aggressive behavior. Mice received BUP (40, 20, or 10 mg/kg), NIC (1, 0.5, and 0.25 mg/kg as base), or vehicle earlier to a social interaction test. BUP (40 mg/kg) decreased social investigation and increased nonsocial exploration in both adolescent and adult mice. The same effects were also observed in adult mice administered with a lower dose of the same drug (20 mg/kg). In adolescents, NIC (1 mg/kg) decreased social investigation, but this effect did not reach statistical significance in adults. In conclusion, a differential sensitivity to the effects of NIC or BUP emerged in some of the behavioral categories when the two age groups were compared.  相似文献   

9.
Cortical electroencephalographic (EEG) changes induced by ethanol (4.3 and 1.4 g/kg, ip), pentobarbital (50 and 16 mg/kg), and nicotine (1.0 g/kg) were examined in long-sleep (LS) and short-sleep (SS) mice that were genetically selected for differential sleep times induced by a hypnotic dosage of ethanol. Ethanol (4.3 g/kg) caused EEG changes that paralleled the behavioral differences, whereas no differences between selected lines were observed following the activating dose (1.4 g/kg). Data support the notion that the known difference in ethanol sleep times is due not to greater SS sensitivity to ethanol activation but rather to greater LS sensitivity to ethanol hypnosis. No differences between selected lines were observed following 50 mg/kg pentobarbital, which again parallels previous behavioral data. The SS mice were more responsive to pentobarbital activation (16 mg/kg). Nicotine more severely reduced EEG power and heart rate in LS mice; a continuous iv infusion of nicotine elicited a distinct pattern of behavioral stereotypy for each selected line, with more profound motor and reflex depression in LS mice. The lines do not differ in rate of nicotine metabolism, hence they must differ in central nervous system sensitivity to nicotine. Thus, lines of mice selectively bred for differential sensitivity to ethanol also display marked differences in electrophysiological and behavioral responses to nicotine.  相似文献   

10.
Post-training administration of the opioid receptor antagonist naloxone (0.1 mg/kg) facilitated 48-hr retention, in mice, of a one-trial step-through inhibitory avoidance response. The naloxone-induced memory facilitation was blocked in animals given the selective brain-noradrenergic neurotoxin DSP4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) (50.0 mg/kg, ip) 7 days before training. Pretreatment with the norepinephrine-uptake inhibitor desmethylimipramine (10.0 mg/kg, ip, 30 min), but not with the serotonin-uptake inhibitor fluoxetine (5.0 mg/kg, ip, 30 min), prevented this antagonism. The simultaneous administration of the central beta-adrenoceptor blocker l-propranolol (2.0 mg/kg, ip), also blocked the effects of naloxone on memory. The effects of naloxone were not blocked by d-propranolol (2.0 mg/kg, ip), the peripheral beta-adrenoceptor blocker sotalol (2.0 mg/kg, ip), the alpha-adrenoceptor blocker phenoxybenzamine (10.0 mg/kg, ip), or the predominantly peripheral alpha-adrenoceptor blocker phentolamine (10.0 mg/kg, ip). These findings suggest that central beta-adrenergic mechanisms are involved in the effects of naloxone on memory. Naloxone (0.1 mg/kg, ip) potentiated the effects of the central beta-adrenoceptor agonist clenbuterol (0.001-1.00 mg/kg, ip), which, when administered alone, facilitates or impairs retention as a function of the dose injected. The simultaneous administration of beta-endorphin (0.1 micrograms/kg, ip) exerted effects opposite to those elicited by naloxone, that is, shifted the dose-response curve of clenbuterol to the right. Considered together, these findings are consistent with the view that the facilitatory action of naloxone on memory results from the release of central beta-adrenergic mechanisms from an inhibition induced by opioid peptides released during or immediately after training.  相似文献   

11.
The present experiments examined the role of the central cholinergic system in the memory impairment induced by post-training administration of a nitric oxide synthase (NOS) inhibitor in mice. Male Swiss mice received a one-trial inhibitory avoidance training (0.8 mA, 50 Hz, 1-s footshock) followed immediately by an ip injection of the NOS inhibitor -NG-nitroarginine methyl ester ( -NAME; 100 mg/kg). Retention (cut-off time, 300 s) was tested 48 h after training. The administration of -NAME results in memory impairment for the inhibitory avoidance task. The effects of -NAME (100 mg/kg, ip) on retention were reversed in a dose-related manner by the centrally acting anticholinesterase physostigmine (35, 70, or 150 μg/kg, sc) administered 30 min after the NOS inhibitor. Further, -NAME (100 mg/kg, ip)-induced memory impairment was completely antagonized by the centrally acting muscarinic cholinergic agonist oxotremorine (OTM; 25, 50, or 100 μg/kg, sc) when given 30 min after -NAME. The peripherally acting anticholinesterase neostigmine (150 μg/kg, sc) did not modify the memory-impairing effects of -NAME. These findings suggest that the memory impairment following post-training administration of a NOS inhibitor is mediated, at least in part, by a reduction of the activity of central muscarinic cholinergic mechanisms and are consistent with our previous view that nitric oxide may be involved in post-training neural processes underlying the storage of newly acquired information.  相似文献   

12.
In rats, pretraining ip administration of the central benzodiazepine receptor antagonist, flumazenil (5.0 mg/kg), or of the inverse agonist, n-butyl-beta-carboline-3-carboxylate (BCCB) (0.2 or 0.5 mg/kg), facilitated retention of a step-down inhibitory avoidance task; the central agonists, clonazepam and diazepam (0.4 or 1.0 mg/kg), had an opposite effect, and the peripheral agonist, 4'-chlordiazepam (1.25 or 6.25 mg/kg), was without effect. Pre- but not post-training flumazenil (2.0 mg/kg) blocked the effect of BCCB (0.5 mg/kg), clonazepam (1.0 mg/kg), or diazepam (1.0 mg/kg) given also pretraining. The post-training administration of all of these drugs had no effect on retention of the avoidance task. Flumazenil (5.0 mg/kg) and BCCB (0.5 mg/kg), given before training, enhanced retention test performance of habituation to a buzzer but not of habituation to an open field. In the three tasks studied, none of the drugs used had any appreciable effect on training session parameters. These results suggest that there is an endogenous mechanism mediated by benzodiazepine agonists, sensitive to inverse agonists, that normally down-regulates acquisition of certain behaviors; this mechanism becomes activated only when the tasks involve or occur with a certain degree of stress or anxiety (i.e., inhibitory avoidance or habituation to the buzzer) and not in less stressful or anxiogenic tasks (i.e., habituation to an open field).  相似文献   

13.
Peripheral glucose administration attenuates the effects of muscarinic cholinergic antagonists on several measures, including spontaneous alternation, inhibitory avoidance, and locomotor activity. The present study examined glucose interactions with mecamylamine, a nicotinic cholinergic antagonist, on these measures. Mecamylamine (5 mg/kg, sc) significantly impaired spontaneous alternation performance. Glucose (100 mg/kg, ip) administered with mecamylamine attenuated the impairment. Treatment with hexamethonium (5 and 10 mg/kg, sc), a peripheral nicotinic blocker, did not impair performance. Pretraining treatment with mecamylamine, but not hexamethonium, significantly reduced later retention latencies on inhibitory avoidance tests. Glucose, administered with mecamylamine prior to training, significantly attenuated the impaired test performance. Mecamylamine, but not hexamethonium, significantly decreased locomotor activity. In contrast to the attenuating effects of glucose on the other measures above, glucose administered with mecamylamine potentiated the decreased locomotor activity. These findings demonstrate that glucose influences the behavioral effects of a nicotinic cholinergic antagonist in a manner generally similar to that of muscarinic cholinergic antagonists, and supports previous evidence that circulating glucose interacts with central cholinergic functions.  相似文献   

14.
The effects of serotonin were studied on locust-killing behavior of mice from low (DD) and high (CBA) predatory aggressive strains. 5-HTP injected intraperitoneally (50 and 100 mg/kg) or 5-HT administered into the lateral ventricle (10 μg) significantly reduced locust-killing behavior in highly aggressive CBA mice. Imipramine (20, 30, and 40 mg/kg) elicited a dose-dependent inhibitory effect on predatory behavior. Fluoxetine (10 and 20 mg/kg) alone had a slight influence on locust-killing behavior but potentiated the action of the subthreshold dose of 5-HTP (25 mg/kg). Pretreatment with the blocker of 5-HT2 type receptors methysergide (2 mg/kg) abolished the inhibitory effect of 5-HTP. These finding indicate that serotonin of the brain exerts an inhibitory effect on predatory behavior in mice. In contrast, neither lesion of the dorsal raphe nucleus (although significantly depleting the brain serotonin) nor treatment with methysergide (2 mg/kg) induced locust-killing behavior in weakly aggressive DD mice. Low predatory aggressiveness in DD mice is suggested to be related to the low tonus of the mechanisms activating killing behavior rather than to excessive serotonergic inhibitory influences.  相似文献   

15.
Blood glucose and brain function: interactions with CNS cholinergic systems   总被引:5,自引:0,他引:5  
We recently found that glucose injections attenuate amnesia and hyperactivity produced by scopolamine, a muscarinic antagonist. The present study examined whether glucose would augment behavioral effects produced by a muscarinic agonist, physostigmine. In experiment I, doses were first determined for which neither glucose (10 mg/kg) nor physostigmine (0.05 mg/kg) altered scopolamine-induced hyperactivity. However, combined glucose-physostigmine injections significantly reduced scopolamine hyperactivity. Experiment II evaluated the effects of glucose on physostigmine-induced tremors. Glucose (10, 100, and 250 mg/kg) or saline injections were given 20 min before physostigmine injections (0.4 or 0.05 mg/kg). Observations of glucose effects on the severity of physostigmine-induced tremors were then obtained at 5-min intervals for 25 min after physostigmine injections. Glucose (100 mg/kg) significantly facilitated the onset of tremors when injected before either dose of physostigmine, and augmented (at 100 and 250 mg/kg) tremor severity when injected before the lower dose of physostigmine. These findings indicate that glucose can facilitate the actions of a cholinergic agonist on two behaviors, locomotor activity and tremors, adding support to the view that circulating glucose levels can modulate central cholinergic function. More generally, the results provide additional evidence that circulating glucose levels can influence brain function.  相似文献   

16.
The effects of prenatal alcohol exposure on grooming, locomotion, and rearing in response to stress were examined in adult rats whose mothers consumed a liquid diet containing 35% ethanol-derived calories (EDC). Offspring of both pair-fed 0% EDC mothers and ad libitum chow-fed mothers were included as controls. In Experiment 1, females groomed more than males following placement into a novel test chamber, but no differences due to prenatal treatment were observed. Ethanol-exposed animals groomed more than controls following the stress of a forced 1-min swim (Experiment 2), but when rats tested in Experiment 1 were observed again after forced swim stress (Experiment 3), no differences due to prenatal treatment or sex were observed. Experiment 4 examined the effects of pretreatment with 1 mg/kg naloxone on novelty-induced grooming and as in Experiment 1 prenatal treatment did not affect grooming responses. Females again groomed significantly more than males and naloxone reduced grooming equally for all groups. The results suggest that novelty-induced grooming is a sex-influenced behavior, with females grooming more than males, and that animals exposed prenatally to alcohol and tested as adults may have altered responses to certain stressors (i.e., forced swim) under specific conditions. The altered grooming response of alcohol-exposed rats to swim stress can be eliminated by preexposing them to novelty stress.  相似文献   

17.
围生期双酚A暴露对不同性别子代小鼠行为的影响   总被引:1,自引:1,他引:0  
探讨围生期母体双酚A(bisphenol A, BPA)暴露对幼年期(生后21~30天, postnatal day 21~30, PND 21~30)和青年期(生后56~63天, PND 56~63)不同性别子代小鼠行为的影响。母鼠从妊娠第7天至断乳前(产后21天)进行BPA(0.05、0.5、5、50 mg/kg/day)灌胃染毒, 同时设对照组。每个剂量组分别在PND 21和PND 56开始测试雌雄子代小鼠各项行为。以旷场行为检测小鼠的自发活动及探究行为, 以高架十字迷宫检测小鼠的焦虑行为, 以水迷宫检测小鼠的空间学习记忆能力, 以跳台检测小鼠的被动回避记忆行为。结果表明, BPA使PND 21雌雄子鼠和PND 56雄性子鼠自发活动减少(p<0.05或p<0.01), 理毛和站立行为发生性别分化(p<0.05或p<0.01); PND 21子鼠的3分钟跑动格数有明显的剂量效应关系, 其中5~50 mg/kg/day组特别显著。BPA显著增加PND 21雌雄子鼠和PND56雌性子鼠在高架十字迷宫中进入开放臂次数和停留时间(p<0.05或p<0.01)并减少封闭臂的进入时间, 但没有明显的剂量效应关系; BPA减少PND 56雄性子鼠开放臂的进入并增加其封闭臂的进入, 干扰了幼年期和青年期小鼠焦虑行为的性别分化。BPA剂量依赖性地延长PND 21和PND 56雄性子鼠在水迷宫搜索平台的平均距离, 其中5~50 mg/kg/day剂量组具有差异显著性(p<0.05或p<0.01), 但对雌性子鼠空间学习记忆行为没有影响。此外, 5~50 mg/kg/day BPA增加PND 21雄性子鼠在跳台实验中的错误次数并缩短其跳下平台潜伏期, PND 56雌雄子鼠的被动回避记忆仅被50 mg/kg/day BPA减弱。以上结果提示, 围生期BPA暴露可影响子代小鼠幼年期和青年期的多种行为及行为的性别差异, 不同行为对BPA的敏感程度不同, 其中以自发活动和探究行为最敏感。  相似文献   

18.
The effects of chronic, daily administration of cocaine on auditory and visual reaction times and thresholds were studied in baboons. Single intramuscular injections of cocaine hydrochloride (0.1 to 5.6 mg/kg) were given once daily for periods of 10 to 25 days, and were followed immediately by psychophysical tests designed to assess cocaine's effects on simple reaction times as on auditory and visual threshold functions. Consistent reductions in reaction times were frequently observed over the cocaine dose range of 0.32 to 1.0 mg/kg; at higher doses, either decreases or increases in reaction times were observed, depending upon the animal. Lowered reaction times generally occurred immediately following the 1st day's cocaine injection, and continued through all subsequent days during the dose administration period, suggesting little development of tolerance or sensitivity to these reaction-time effects. Reaction-time decreases showed a U-shaped dose-effect function. The greatest decreases in reaction times occurred from 0.32 to 1.0 mg/kg, and produced an average reaction-time decrease of 10 to 12%. Concurrently measured auditory and visual thresholds showed no systematic changes as a function of cocaine dose. Pausing was observed during performance of the psychophysical tasks, with the length of total session pause times being directly related to cocaine dose.  相似文献   

19.
This study was aimed at documenting the changes in the frequency and duration of bouts of behavior of Sprague-Dawley male rats in the open-field following each of four injections of apomorphine (Apo, 5 mg/kg, sc, immediate), or normal saline, delivered at 3-day intervals. Independent quantification of locomotion, sniffing, rearing, grooming, inactivity, gnawing, nodding, and jumping was obtained continuously throughout the 78-min sessions. Apo eliminated grooming and inactivity on all sessions. The large increases in locomotion and sniffing seen in the Apo rats compared to the saline rats on the first session were sustained throughout subsequent sessions. However, the Apo-induced potentiation of nodding of the head and gnawing, seen acutely, declined across sessions. These observations reconcile inconsistencies in the literature on subacute Apo effects. Finally, the individual differences in behavioral scores of Apo-treated rats were more stable than were those of saline-treated rats. This finding supports evidence in the literature that individual differences in neurochemistry are more likely to be predicted from the behavioral scores of Apo-challenged rats than from the scores of untreated rats.  相似文献   

20.
The effects of the dopaminergic agonist bromocriptine (BC) and exogenously administered prolactin (PRL) on the spontaneous behavior of female cats were investigated. The objective was to test whether BC-induced behavioral effects may be antagonized by PRL. BC (6 mg/kg ip) administration induced abnormal behaviors such as limb flicks, abortive grooms, head/body shakes, and hallucinatory-like behavior/escape as well as excessive grooming. PRL (5 mg/kg ip) administration induced biphasic changes in grooming. The first change was an increase in grooming frequency averaging 256% of baseline control values and lasting for 1 h. This change was followed by reductions in grooming of 75 and 82.5% below baseline during Hours 2 and 3 postinjection, respectively. Combined BC and PRL treatment antagonized the frequency of BC-induced motor effects such as limb flicks, abortive grooms, and head/body shakes. Limb flicks occurred nine times more often 2 h after BC alone than after BC and PRL. The combined treatment also antagonized the excessive grooming observed after separate administrations of BC and PRL. The observed interactions between PRL and BC behavioral effects support the notion that PRL may be an important modulator of dopamine-dependent motor behavior in female cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号