首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FDG-PET analysis and findings in amnesia resulting from hypoxia   总被引:2,自引:0,他引:2  
The assumptions underlying neuroimaging, and problems in its analysis and interpretation, are commonly underestimated in neuropsychology. The ways in which fluoro-deoxy-glucose (FDG) positron emission tomography (PET) data can be analysed are discussed. PET findings from four patients who had suffered severe amnesia, following episodes of acute hypoxia, are presented. These patients had shown evidence of medial temporal (hippocampal and parahippocampal) atrophy on MRI brain scans. The PET data were analysed in several different ways. The converging findings were that the patients showed bilateral thalamic hypometabolism, and there was also evidence of retrosplenial hypometabolism bilaterally. Cognitively, these patients performed most like other patients with medial temporal lesions, but the results indicate that structural lesions can have distal metabolic effects on structures elsewhere. These findings are interpreted in the light of neuroanatomical observations concerning parallel projections between medial temporal lobe structures and the thalamus, some of which pass via the retrosplenium.  相似文献   

2.
The assumptions underlying neuroimaging, and problems in its analysis and interpretation, are commonly underestimated in neuropsychology. The ways in which fluoro-deoxy-glucose (FDG) positron emission tomography (PET) data can be analysed are discussed. PET findings from four patients who had suffered severe amnesia, following episodes of acute hypoxia, are presented. These patients had shown evidence of medial temporal (hippocampal and parahippocampal) atrophy on MRI brain scans. The PET data were analysed in several different ways. The converging findings were that the patients showed bilateral thalamic hypometabolism, and there was also evidence of retrosplenial hypometabolism bilaterally. Cognitively, these patients performed most like other patients with medial temporal lesions, but the results indicate that structural lesions can have distal metabolic effects on structures elsewhere. These findings are interpreted in the light of neuroanatomical observations concerning parallel projections between medial temporal lobe structures and the thalamus, some of which pass via the retrosplenium.  相似文献   

3.
逆行性遗忘、额叶与远期记忆的组织   总被引:3,自引:0,他引:3  
通过对一例严重记忆障碍合并额叶损伤病人的逆行性遗忘的分析,对远期记忆的组织特点进行了探讨。被试的额叶功能受损较为明显。除顺行性遗忘外,患者的逆行性遗忘也较为严重。对病人进行的逆行性遗忘检测包括:著名人物测验、著名事件、一般知识测验和自传性记忆测验等。被试对著名人物、著名事件的回忆和再认成绩、以及有关个人的情节和语义记忆成绩均较低,但没有典型的随时间下降的趋势,而是呈平直斜率;患者儿童期的自传性记忆和公众事件记忆也受损。这两个特点均与内侧颞叶一间脑系统损伤的特点不同,提示额叶参与了远期记忆的提取等过程。  相似文献   

4.
We describe a case of severe anterograde and retrograde amnesia resulting from herpes simplex encephalitis. Magnetic resonance imaging revealed pathological changes in the bilateral hippocampi, parahippocampal gyri, fusiform gyri, medial temporal poles, posterior part of the cingulate gyri, and insula. The patient showed severe amnesia for autobiographical episodic memory in relation to events that had occurred throughout her life, but temporally graded amnesia for autobiographical semantic memory, and severe amnesia without a temporal gradient for public events and famous people. However, using a multiple-choice method, she showed a high level of accuracy when choosing keywords related to public or personal events, although this did not prompt her recollection of the events. An important indication of these results is that, even with severe retrograde amnesia, memories of past events are not completely lost. We propose that an event may be stored in a fragmented form, consisting of many components, and that normal recall of an event may require recombination or reconstruction of these components.  相似文献   

5.
Several lines of evidence in humans and experimental animals suggest that the hippocampus is critical for the formation and retrieval of spatial memory. However, although the hippocampus is reciprocally connected to adjacent cortices within the medial temporal lobe and they, in turn, are connected to the neocortex, little is known regarding the function of these cortices in memory. Here, using a reference spatial memory task in the radial maze, we show that neurotoxic perirhinal cortex lesions produce a profound retrograde amnesia when learning-surgery intervals of 1 or 50 d are used (Experiment 1). With the aim of dissociating between consolidation and retrieval processes, we injected lidocaine either daily after training (Experiment 2) or before a retention test once the learning had been completed (Experiment 3). Results show that reversible perirhinal inactivation impairs retrieval but not consolidation. However, the same procedure followed in Experiment 2 disrupted consolidation when the lidocaine was injected into the dorsal hippocampus. The results of Experiment 4 rule out the possibility that the deficit in retrieval is due to a state-dependent effect. These findings demonstrate the differential contribution of various regions of the medial temporal lobe to memory, suggesting that the perirhinal cortex plays a key role in the retrieval of spatial information for a long period of time.  相似文献   

6.
Episodic memory, amnesia, and the hippocampal-anterior thalamic axis   总被引:14,自引:0,他引:14  
Aggleton JP  Brown MW 《The Behavioral and brain sciences》1999,22(3):425-44; discussion 444-89
By utilizing new information from both clinical and experimental (lesion, electrophysiological, and gene-activation) studies with animals, the anatomy underlying anterograde amnesia has been reformulated. The distinction between temporal lobe and diencephalic amnesia is of limited value in that a common feature of anterograde amnesia is damage to part of an "extended hippocampal system" comprising the hippocampus, the fornix, the mamillary bodies, and the anterior thalamic nuclei. This view, which can be traced back to Delay and Brion (1969), differs from other recent models in placing critical importance on the efferents from the hippocampus via the fornix to the diencephalon. These are necessary for the encoding and, hence, the effective subsequent recall of episodic memory. An additional feature of this hippocampal-anterior thalamic axis is the presence of projections back from the diencephalon to the temporal cortex and hippocampus that also support episodic memory. In contrast, this hippocampal system is not required for tests of item recognition that primarily tax familiarity judgements. Familiarity judgements reflect an independent process that depends on a distinct system involving the perirhinal cortex of the temporal lobe and the medial dorsal nucleus of the thalamus. In the large majority of amnesic cases both the hippocampal-anterior thalamic and the perirhinal-medial dorsal thalamic systems are compromised, leading to severe deficits in both recall and recognition.  相似文献   

7.
The most useful information about the anatomy of human memory comes from cases where there has been extensive neuropsychological testing followed by detailed post-mortem neurohistological analysis. To our knowledge, only eight such cases have been reported (four with medial temporal lobe damage and four with diencephalic damage). Here we present neuropsychological and post-mortem neurohistological findings for one patient (NC) with bilateral damage to the medial temporal lobe and two patients (MG, PN) with diencephalic damage due to bilateral thalamic infarction and Korsakoff's syndrome, respectively. All three patients exhibited a similar phenotype of amnesia with markedly impaired declarative memory (anterograde and retrograde) but normal performance on tests of nondeclarative memory (e.g., priming and adaptation-level effects) as well as on tests of other cognitive functions. Patient NC had damage to the hippocampus (dentate gyrus and the CA1 and CA3 fields) and layer III of the entorhinal cortex, but with relative sparing of the CA2 field and the subiculum. Patient MG had damage to the internal medullary lamina and mediodorsal thalamic nuclei. Patient PN had damage to the mammillary nuclei, mammillothalamic tracts, and the anterior thalamic nuclei. These findings illuminate several issues regarding the relation between diencephalic and medial temporal lobe amnesia, the status of recognition memory in amnesia, and the neuroanatomy of memory.  相似文献   

8.
A case of remitted global amnesia, believed to have residual left medial temporal lobe damage, is tested by the same recognition memory paradigm used by Wood, Taylor, et al. in the previous paper. On two different testing occasions, once using an intentional and once an incidental memory procedure, the patient's right occipital flows were inversely correlated with memory accuracy and the values were very close to the regression line for 10 normals relating occipital flow to memory accuracy. The left occipital flows did not fit the regression line, however. The results were interpreted as consistent with the notion that occipital flow is inversely related to medial temporal lobe activation. Another surprising feature of this case is the unexpected persistence of amnesia for a period from about 5 to 10 years before her episode to about 2 weeks after the episode, with recovery of memory functioning for the period since that time.  相似文献   

9.
One traditional and long-held view of medial temporal lobe (MTL) function is that it contains a system of structures that are exclusively involved in memory, and that the extent of memory loss following MTL damage is simply related to the amount of MTL damage sustained. Indeed, human patients with extensive MTL damage are typically profoundly amnesic whereas patients with less extensive brain lesions centred upon the hippocampus typically exhibit only moderately severe anterograde amnesia. Accordingly, the latter observations have elevated the hippocampus to a particularly prominent position within the purported MTL memory system. This article reviews recent lesion studies in macaque monkeys in which the behavioural effects of more highly circumscribed lesions (than those observed to occur in human patients with MTL lesions) to different subregions of the MTL have been examined. These studies have reported new findings that contradict this concept of a MTL memory system. First, the MTL is not exclusively involved in mnemonic processes; some MTL structures, most notably the perirhinal cortex, also contribute to perception. Second, there are some forms of memory, including recognition memory, that are not always affected by selective hippocampal lesions. Third, the data support the idea that regional functional specializations exist within the MTL. For example, the macaque perirhinal cortex appears to be specialized for processing object identity whereas the hippocampus may be specialized for processing spatial and temporal relationships.  相似文献   

10.
One traditional and long-held view of medial temporal lobe (MTL) function is that it contains a system of structures that are exclusively involved in memory, and that the extent of memory loss following MTL damage is simply related to the amount of MTL damage sustained. Indeed, human patients with extensive MTL damage are typically profoundly amnesic whereas patients with less extensive brain lesions centred upon the hippocampus typically exhibit only moderately severe anterograde amnesia. Accordingly, the latter observations have elevated the hippocampus to a particularly prominent position within the purported MTL memory system. This article reviews recent lesion studies in macaque monkeys in which the behavioural effects of more highly circumscribed lesions (than those observed to occur in human patients with MTL lesions) to different subregions of the MTL have been examined. These studies have reported new find-ings that contradict this concept of a MTL memory system. First, the MTL is not exclusively involved in mnemonic processes; some MTL structures, most notably the perirhinal cortex, also contribute to perception. Second, there are some forms of memory, including recognition memory, that are not always affected by selective hippocampal lesions. Third, the data support the idea that regional functional specializations exist within the MTL. For example, the macaque perirhinal cortex appears to be specialized for processing object identity whereas the hippocampus may be specialized for processing spatial and temporal relationships.  相似文献   

11.
There is considerable controversy concerning the theoretical basis of retrograde amnesia (R.A.). In the present paper, we compare medial temporal, medial plus lateral temporal, and frontal lesion patients on a new autobiographical memory task and measures of the more semantic aspects of memory (famous faces and news events). Only those patients with damage extending beyond the medial temporal cortex into the lateral temporal regions showed severe impairment on free recall remote memory tasks, and this held for both the autobiographical and the more semantic memory tests. However, on t-test analysis, the medial temporal group was impaired in retrieving recent autobiographical memories. Within the medial temporal group, those patients who had combined hippocampal and parahippocampal atrophy (H+) on quantified MRI performed somewhat worse on the semantic tasks than those with atrophy confined to the hippocampi (H-), but scores were very similar on autobiographical episodic recall. Correlational analyses with regional MRI volumes showed that lateral temporal volume was correlated significantly with performance on all three retrograde amnesia tests. The findings are discussed in terms of consolidation, reconsolidation, and multiple trace theory: We suggest that a widely distributed network of regions underlies the retrieval of past memories, and that the extent of lateral temporal damage appears to be critical to the emergence of a severe remote memory impairment.  相似文献   

12.
Two tests of auditory recognition memory were given to four patients with bilateral hippocampal damage (H+) and three patients with large medial temporal lobe lesions and additional variable damage to lateral temporal cortex (MTL+). When single stimuli were presented, performance was normal across delays as long as 30 sec, presumably because information could be maintained in working memory through rehearsal. When lists of 10 stimuli were presented, performance was impaired after a 5-min delay. Patients with MTL+ lesions performed marginally worse than patients with H+ lesions, consistent with findings for recognition memory in other modalities. The findings show that auditory recognition, like recognition memory in other sensory modalities, is dependent on the medial temporal lobe.  相似文献   

13.
This paper reviews evidence from neuropsychological patient studies relevant to two questions concerning the functions of the medial temporal lobe in humans. The first is whether the hippocampus and the adjacent perirhinal cortex make different contributions to memory. Data are discussed from two patients with adult-onset bilateral hippocampal damage who show a sparing of item recognition relative to recall and certain types of associative recognition. It is argued that these data are consistent with Aggleton and Brown's (1999) proposal that familiarity-based recognition memory is not dependent on the hippocampus but is mediated by the perirhinal cortex and dorso-medial thalamic nucleus. The second question is whether the recognition memory deficit observed in medial temporal lobe amnesia can be explained by a deficit in perceptual processing and representation of objects rather than a deficit in memory per se. The finding that amnesics were impaired at recognizing, after short delays, patterns that they could successfully discriminate suggests that their memory impairment did not result from an object-processing deficit. The possibility remains, however, that the human perirhinal cortex plays a role in object processing, as well as in recognition memory, and data are presented that support this possibility.  相似文献   

14.
This paper reviews evidence from neuropsychological patient studies relevant to two questions concerning the functions of the medial temporal lobe in humans. The first is whether the hippocampus and the adjacent perirhinal cortex make different contributions to memory. Data are discussed from two patients with adult-onset bilateral hippocampal damage who show a sparing of item recognition relative to recall and certain types of associative recognition. It is argued that these data are consistent with Aggleton and Brown's (1999) proposal that familiarity-based recognition memory is not dependent on the hippocampus but is mediated by the perirhinal cortex and dorso-medial thalamic nucleus. The second question is whether the recognition memory deficit observed in medial temporal lobe amnesia can be explained by a deficit in perceptual processing and representation of objects rather than a deficit in memory per se. The finding that amnesics were impaired at recognizing, after short delays, patterns that they could successfully discriminate suggests that their memory impairment did not result from an object-processing deficit. The possibility remains, however, that the human perirhinal cortex plays a role in object processing, as well as in recognition memory, and data are presented that support this possibility.  相似文献   

15.
The medial temporal lobe (MTL) has been considered traditionally to subserve declarative memory processes only. Recent studies in nonhuman primates suggest, however, that the MTL may also be critical to higher order perceptual processes, with the hippocampus and perirhinal cortex being involved in scene and object perception, respectively. The current article reviews the human neuropsychological literature to determine whether there is any evidence to suggest that these same views may apply to the human MTL. Although the majority of existing studies report intact perception following MTL damage in human amnesics, there have been recent studies that suggest that when scene and object perception are assessed systematically, signifi-cant impairments in perception become apparent. These findings have important implications for current mnemonic theories of human MTL function and our understanding of human amnesia as a result of MTL lesions.  相似文献   

16.
The medial temporal lobe (MTL) has been considered traditionally to subserve declarative memory processes only. Recent studies in nonhuman primates suggest, however, that the MTL may also be critical to higher order perceptual processes, with the hippocampus and perirhinal cortex being involved in scene and object perception, respectively. The current article reviews the human neuropsychological literature to determine whether there is any evidence to suggest that these same views may apply to the human MTL. Although the majority of existing studies report intact perception following MTL damage in human amnesics, there have been recent studies that suggest that when scene and object perception are assessed systematically, significant impairments in perception become apparent. These findings have important implications for current mnemonic theories of human MTL function and our understanding of human amnesia as a result of MTL lesions.  相似文献   

17.
Perirhinal cortex and area TE are immediately adjacent to each other in the temporal lobe and reciprocally interconnected. These areas are thought to lie at the interface between visual perception and visual memory, but it has been unclear what their separate contributions might be. In three experiments, monkeys with bilateral lesions of the perirhinal cortex exhibited a different pattern of impairment than monkeys with bilateral lesions of area TE. In experiment 1, lesions of the perirhinal cortex produced a multimodal deficit in recognition memory (delayed nonmatching to sample), whereas lesions of area TE impaired performance only in the visual modality. In experiment 2, on a test of visual recognition memory (the visual paired comparison task) lesions of the perirhinal cortex impaired performance at long delays but spared performance at a very short delay. In contrast, lesions of area TE impaired performance even at the short delay. In experiment 3, lesions of the perirhinal cortex and lesions of area TE produced an opposite pattern of impairment on two visual discrimination tasks, simple object discrimination learning (impaired only by perirhinal lesions), and concurrent discrimination learning (impaired only by TE lesions). Taken together, the findings suggest that the perirhinal cortex, like other medial temporal lobe structures, is important for the formation of memory, whereas area TE is important for visual perceptual processing.  相似文献   

18.
Rats were tested once daily on a four-choice delayed match from sample task with a water reward. Each day the correct place changed, and a single exposure to it was provided on information trials. Lesions of the hippocampal formation that involved the fornix, or dorsal hippocampus bilaterally, produced a severe impairment in the performance of previously trained rats. By contrast, lesions of the ventral hippocampus did not preclude reacquisition of the place-memory task. Some otherwise impaired rats with fornical lesions were able to find the water when aided by nonplace cues that consistently signaled reward. Reducing the number of choices from four to two did not aid the impaired rats. Certain lesions of the hippocampal formation in the rat produce a deficit appropriately described as amnesia. The memory deficit is consistent with a role for the hippocampus in processing of place information and shows some parallels to the amnesia seen in persons with temporal lobe lesions.  相似文献   

19.
A subject with circumscribed damage to mesial and nonmesial left anterior temporal structures (which included the left entorhinal cortex and hippocampus and the left anterolateral association cortices) maintains accurate nonverbal records of past experiences, and acquires accurate new nonverbal records. However, he has a severe defect in the retrieval and acquisition of specific verbal tags denoting those records. This dissociation is revealed by standard neuropsychological tasks, and by experimental probes focused on (1) retrieval of previously learned verbal and nonverbal entities; and (2) acquisition of new visuoverbal relationships. The results extend our current understanding of the manner in which mesial and nonmesial structures in the anterior temporal lobe contribute to the formation and storage of verbal and nonverbal records.  相似文献   

20.
内侧颞叶与来源记忆   总被引:2,自引:0,他引:2  
聂爱情  郭春彦 《心理科学》2005,28(1):204-206
来源记忆不同于项目记忆。早期的研究认为来源记忆的神经基础主要是前额叶,但近几年的相关研究发现内侧颞叶在来源记忆中的作用也是相当重要的,健康被试的功能神经成像研究和内侧颞叶损伤病人研究都为内侧颞叶在来源记忆中的作用提供了可靠证据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号