首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 291 毫秒
1.
Abstract— The two experiments reported explored a bias toward symmetry in judging identity and orientation of indeterminate two-dimensional shapes. Subjects viewed symmetric and asymmetric filled, random polygons and described, "what each figure looks like" and its orientation. Viewers almost universally interpreted the shapes as silhouettes of bilaterally symmetric three-dimensional (3-D) objects. This assumption of 3-D symmetry tended to constrain perceived vantage of the identified objects such that symmetric shapes were interpreted as straight-on views, and asymmetric shapes as profile or oblique views. Because most salient objects in the world are bilaterally symmetric, these findings are consistent with the view that assuming 3-D symmetry can be a robust heuristic for constraining orientation when identifying objects from indeterminate patterns.  相似文献   

2.
Prior experiments on shape constancy from novel views are inconclusive: Some show that shapes of objects can be recognized reliably from novel views, whereas others show just the opposite. Our analysis of prior results suggests that shape constancy from novel views is reliable when the object has properties that constrain its shape: The object has volumetric primitives, it has surfaces, it is symmetrical, it is composed of geons, its contours are planar, and its images provide useful topological information about its three-dimensional structure. To test the role of some of these constraints, we performed a set of experiments. Solid shapes (polyhedra) were shown on a computer monitor by means of kinetic depth effect. Experiment 1 showed that shape constancy can be reliably achieved when a polyhedron is represented by its contours (most of the constraints are present), but not when it is represented by vertices or by a polygonal line connecting the vertices in a random order (all the constraints are absent). Experiments 2 and 3 tested the role of individual constraints. Results of these experiments show that shape constancy from novel views is reliable when the object has planar contours and when the shapes of the contours together with topological information about the relations among the contours constrain the possible interpretations of the shape. Symmetry of the object and the topological stability of its image also contribute to shape constancy.  相似文献   

3.
4.
5.
Three experiments were conducted to examine the accuracy of 3-D shape recovery from deforming-contour displays. The displays simulated silhouettes of ellipsoids rotating about a vertical axis. Subjects judged the horizontal cross-section of the ellipsoids. The shape of the ellipsoid, the position of the axis of rotation, and the type of projection were manipulated in Experiment 1. The results indicated relatively accurate shape recovery when the major axis of the ellipsoid was small. In Experiment 2, the shape of the ellipsoid and the velocity and curvature of the contour were manipulated. When the rate of deformation of curvature was decreased, more eccentric shapes were reported. In Experiment 3, the shape of the object and the amount of simulated rotation were manipulated. Subjects made both shape and extent of rotation judgments. The results showed that eccentricity of shape responses could be accurately predicted from rotation responses, suggesting that the recovery of 3-D shape from smooth, deforming contours is dependent on the perceived extent of rotation.  相似文献   

6.
In a series of four experiments, we evaluated observers' abilities to perceive and discriminate ordinal depth relationships between separated local surface regions for objects depicted by static, deforming, and disparate boundary contours or silhouettes. Comparisons were also made between judgments made for silhouettes and for objects defined by surface texture, which permits judgment based on conventional static texture gradients, conventional stereopsis, and conventional structure-from-motion. In all the experiments, the observers were able to detect, with relatively high precision, ordinal depth relationships, an aspect of local three-dimensional (3-D) structure, from boundary contours or silhouettes. The results of the experiments clearly demonstrate that the static, disparate, and deforming boundary contours of solid objects are perceptually important optical sources of information about 3-D shape. Other factors that were found to affect performance were the amount of separation between the local surface regions, the proximity or closeness of the regions to the boundary contour itself, and for the conditions with deforming contours, the overall magnitude of the boundary deformation.  相似文献   

7.
S Palmer  E Simone  P Kube 《Perception》1988,17(2):147-163
Three experiments are reported in which it is tested whether the Gestalt effect of configural orientation on shape perception operates on two-dimensional (2-D) or three-dimensional (3-D) representations of space. It is known that gravitationally defined squares and diamonds take longer to discriminate in diagonal arrays than in horizontal or vertical arrays. In the first experiment it is shown that this interference effect decreases dramatically in magnitude when pictorial depth information is added so that subjects perceive the target shapes in different depth planes. In the second experiment this difference is shown not to be due to relative size of the target shapes or to occlusion of a background plane. It is also shown, in the final experiment, that this difference is not due to linear perspective information or merely to perception of the target figures in a 3-D scene. The overall pattern of results supports the position that this configural reference frame effect arises primarily when the elements of the configuration are coplanar, and that the principal organization underlying it is the structure of the perceived 3-D environment rather than that of the 2-D image. In all three experiments, however, there is also a small interference effect in the noncoplanar 3-D conditions. This might be due either to some aspect of reference frame selection operating on the 2-D image representation or to the failure of subjects to see depth in the 3-D stimuli on some proportion of the trials.  相似文献   

8.
We tested shape constancy from novel views in the case of binocular viewing, using a variety of stimuli, including polyhedra, polygonal lines, and points in 3-D. The results of the psychophysical experiments show that constraints such as planarity of surface contours and symmetry are critical for reliable shape constancy. These results are consistent with the results obtained in our previous psychophysical experiments on shape constancy from novel views in the presence of a kinetic depth effect (Pizlo & Stevenson, 1999). On the basis of these results, we developed a new model of binocular shape reconstruction. The model is based on the assumption that binocular reconstruction is a difficult inverse problem, whose solution requires imposing a priori constraints on the family of possible interpretations. In the model, binocular disparity is used to correct monocularly reconstructed shape. The new model was tested on the same shapes as those used in the psychophysical experiments. The reconstructions produced by this model are substantially more reliable than the reconstructions produced by models that do not use constraints. Interestingly, monocular (but not binocular) reconstructions produced by this model correlate well with both monocular and binocular performance of human subjects. This fact suggests that binocular and monocular reconstructions of shapes in the human visual system involve similar mechanisms based on monocular shape constraints.  相似文献   

9.
Primitives are both important and unavoidable, and which set of primitives we endorse will greatly shape our theories and how those theories provide solutions to the problems that we take to be important. After introducing the notion of a primitive posit, I discuss the different kinds of primitives that we might posit. Following Cowling ( 2013 ), I distinguish between ontological and ideological primitives, and, following Benovsky ( 2013 ), between functional and content views of primitives. I then propose that these two distinctions cut across each other leading to four types of primitive posits. I then argue that theoretical virtues should be taken to be metatheoretical ideological primitives. I close with some reflections on the global nature of comparing sets of primitives.  相似文献   

10.
Recognizing silhouettes and shaded images across depth rotation   总被引:1,自引:0,他引:1  
Hayward WG  Tarr MJ  Corderoy AK 《Perception》1999,28(10):1197-1215
  相似文献   

11.
Trajectory forms in events consist of the path shape and the speed profile (Bingham, 1987, 1995). Wickelgren and Bingham (2004) showed that adults can use the speed profile as visual information to recognize events from different perspectives, despite perspective distortions and differences in optical components. We now investigate whether adults can use trajectory forms to recognize events when the forms are viewed from 3-D perspectives and the path shape and speed profile vary. In Experiment 1, we tested recognition of events that differ in path shape (with the speed profile held constant). In Experiment 2, we tested recognition of events in which speed profiles were mapped onto circular paths. In Experiment 3, as a strong test of sensitivity to trajectory forms, we tested simultaneous separate recognition of speed profile and path shape when both varied across events. In all three experiments, events were viewed from multiple 3-D perspectives. The results show that both the shape of the path and the speed profile provide information for visual event recognition. We found that adults exhibit constancy (or view invariance) in being able to use trajectory forms to identify the same events when viewed from different 3-D perspectives.  相似文献   

12.
In a series of experiments, a negative priming paradigm was used to determine how the visual system represents novel shapes under conditions of inattention. Observers in a shape-matching task viewed overlapping shapes with or without surface segmentation cues. Positive priming occurred with opaque and transparent surface-like shapes, whereas negative priming was found with outlined and transparent shapes that lacked surface segmentation cues. This effect generalized to familiar shapes. These results support the importance of segmentation cues in negative priming and suggest that, under otherwise identical conditions, surface segmentation processes can determine whether positive or negative priming occurs in an implicit memory task. Thus, selective attention for overlapping shapes may be best understood in relation to surface segmentation processes.  相似文献   

13.
I show how a conversational process that takes simple, intuitively meaningful steps may be understood as a sophisticated computation that derives the richly detailed, complex representations implicit in our knowledge of language. To develop the account, I argue that natural language is structured in a way that lets us formalize grammatical knowledge precisely in terms of rich primitives of interpretation. Primitives of interpretation can be correctly viewed intentionally, as explanations of our choices of linguistic actions; the model therefore fits our intuitions about meaning in conversation. Nevertheless, interpretations for complex utterances can be built from these primitives by simple operations of grammatical derivation. In bridging analyses of meaning at semantic and symbol-processing levels, this account underscores the fundamental place for computation in the cognitive science of language use.  相似文献   

14.
A number of studies have resulted in the finding of a 3-D perceptual anisotropy, whereby spatial intervals oriented in depth are perceived to be smaller than physically equal intervals in the frontoparallel plane. In this experiment, we examined whether this anisotropy is scale invariant. The stimuli were L shapes created by two rods placed flat on a level grassy field, with one rod defining a frontoparallel interval, and the other, a depth interval. Observers monocularly and binocularly viewed L shapes at two scales such that they were projectively equivalent under monocular viewing. Observers judged the aspect ratio (depth/width) of each shape. Judged aspect ratio indicated a perceptual anisotropy that was invariant with scale for monocular viewing, but not for binocular viewing. When perspective is kept constant, monocular viewing results in perceptual anisotropy that is invariant across these two scales and presumably across still larger scales. This scale invariance indicates that the perception of shape under these conditions is determined independently of the perception of size.  相似文献   

15.
Schumacher R 《Perception》2008,37(3):433-445
This paper focuses on the epistemic conditions of visual perception, ie it concentrates on the question of what kind of knowledge is required for us in order to be able to see colours and shapes as spatial properties of things. According to contemporary theories of sensory perception that follow the tradition of George Berkeley, like Alva Noe's so-called enactive approach to perception, this type of visual perception requires a certain kind of implicit practical knowledge, namely implicit sensorimotor knowledge of the way sensory stimulation varies as the perceiver moves. Two objections are presented against this central claim of the enactive approach. First, empirical evidence from psychological research on children's cognitive and motor development suggests that visual content is entirely independent of sensorimotor knowledge. Second, the enactive approach gets involved in the characteristic problems of classical sense--datum theories by introducing the extremely problematic claim that the recognition of appearances is the epistemic starting point for the perception of things and their properties.  相似文献   

16.
17.
Explicit memory tests such as recognition typically access semantic, modality-independent representations, while perceptual implicit memory tests typically access presemantic, modality-specific representations. By demonstrating comparable cross- and within-modal priming using vision and haptics with verbal materials (Easton, Srinivas, & Greene, 1997), we recently questioned whether the representations underlying perceptual implicit tests were modality specific. Unlike vision and audition, with vision and haptics verbal information can be presented in geometric terms to both modalities. The present experiments extend this line of research by assessing implicit and explicit memory within and between vision and haptics in the nonverbal domain, using both 2-D patterns and 3-D objects. Implicit test results revealed robust cross-modal priming for both 2-D patterns and 3-D objects, indicating that vision and haptics shared abstract representations of object shape and structure. Explicit test results for 3-D objects revealed modality specificity, indicating that the recognition system keeps track of the modality through which an object is experienced.  相似文献   

18.
We assess the importance of outline shape in mediating the recognition of living and nonliving things. Natural objects were presented as shaded line drawings or silhouettes, and were living and nonliving things. For object decision (deciding whether an object may be encountered in real life) there were longer response times to nonliving than to living things. Importantly, this category difference was greater for silhouettes than for shaded line drawings. For naming, similar category and stimulus differences were evident, but were not as pronounced. We also examined effects of prior naming on subsequent object decision performance. Repetition priming was equivalent for nonliving and living things. However, prior presentation of silhouettes (but not shaded line drawings) reduced the longer RT to nonliving things relative to living things in silhouette object decision. We propose that outline contour benefits recognition of living things more than nonliving things: For nonliving things, there may be greater 2-D/3-D interpretational ambiguity, and/or they may possess fewer salient features.  相似文献   

19.
Garrigan P  Kellman PJ 《Perception》2011,40(11):1290-1308
In early cortex, visual information is encoded by retinotopic orientation-selective units. Higher-level representations of abstract properties, such as shape, require encodings that are invariant to changes in size, position, and orientation. Within the domain of open, 2-D contours, we consider how an economical representation that supports viewpoint-invariant shape comparisons can be derived from early encodings. We explore the idea that 2-D contour shapes are encoded as joined segments of constant curvature. We report three experiments in which participants compared sequentially presented 2-D contour shapes comprised of constant curvature (CC) or non-constant curvature (NCC) segments. We show that, when shapes are compared across viewpoint or for a retention interval of 1000 ms, performance is better for CC shapes. Similar recognition performance is observed for both shape types, however, if they are compared at the same viewpoint and the retention interval is reduced to 500 ms. These findings are consistent with a symbolic encoding of 2-D contour shapes into CC parts when the retention intervals over which shapes must be stored exceed the duration of initial, transient, visual representations.  相似文献   

20.
This article examines how the human visual system represents the shapes of 3-dimensional (3D) objects. One long-standing hypothesis is that object shapes are represented in terms of volumetric component parts and their spatial configuration. This hypothesis is examined in 3 experiments using a whole-part matching paradigm in which participants match object parts to whole novel 3D object shapes. Experiments 1 and 2, consistent with volumetric image segmentation, show that whole-part matching is faster for volumetric component parts than for either open or closed nonvolumetric regions of edge contour. However, the results of Experiment 3 show that an equivalent advantage is found for bounded regions of edge contour that correspond to object surfaces. The results are interpreted in terms of a surface-based model of 3D shape representation, which proposes edge-bounded 2-dimensional polygons as basic primitives of surface shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号