首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Historically, it was the interpretations of intuitionist logic in the modal logic S4 that inspired the standard Kripke semantics for intuitionist logic. The inspiration of this paper is the interpretation of intuitionist logic in the non-normal modal logic S3: an S3 model structure can be 'looked at' as an intuitionist model structure and the semantics for S3 can be 'cashed in' to obtain a non-normal semantics for intuitionist propositional logic. This non-normal semantics is then extended to intuitionist quantificational logic.  相似文献   

2.
Kripke-completeness of every classical modal logic with Sahlqvist formulas is one of the basic general results on completeness of classical modal logics. This paper shows a Sahlqvist theorem for modal logic over the relevant logic Bin terms of Routley-Meyer semantics. It is shown that usual Sahlqvist theorem for classical modal logics can be obtained as a special case of our theorem.  相似文献   

3.
Hybrid logics internalize their own semantics. Members of the newer family of justification logics internalize their own proof methodology. It is an appealing goal to combine these two ideas into a single system, and in this paper we make a start. We present a hybrid/justification version of the modal logic T. We give a semantics, a proof theory, and prove a completeness theorem. In addition, we prove a Realization Theorem, something that plays a central role for justification logics generally. Since justification logics are newer and less well known than hybrid logics, we sketch their background, and give pointers to their range of applicability. We conclude with suggestions for future research. Indeed, the main goal of this paper is to encourage others to continue the investigation begun here.  相似文献   

4.
Blok  W. J.  Rebagliato  J. 《Studia Logica》2003,74(1-2):153-180
The notion of an algebraic semantics of a deductive system was proposed in [3], and a preliminary study was begun. The focus of [3] was the definition and investigation of algebraizable deductive systems, i.e., the deductive systems that possess an equivalent algebraic semantics. The present paper explores the more general property of possessing an algebraic semantics. While a deductive system can have at most one equivalent algebraic semantics, it may have numerous different algebraic semantics. All of these give rise to an algebraic completeness theorem for the deductive system, but their algebraic properties, unlike those of equivalent algebraic semantics, need not reflect the metalogical properties of the deductive system. Many deductive systems that don't have an equivalent algebraic semantics do possess an algebraic semantics; examples of these phenomena are provided. It is shown that all extensions of a deductive system that possesses an algebraic semantics themselves possess an algebraic semantics. Necessary conditions for the existence of an algebraic semantics are given, and an example of a protoalgebraic deductive system that does not have an algebraic semantics is provided. The mono-unary deductive systems possessing an algebraic semantics are characterized. Finally, weak conditions on a deductive system are formulated that guarantee the existence of an algebraic semantics. These conditions are used to show that various classes of non-algebraizable deductive systems of modal logic, relevance logic and linear logic do possess an algebraic semantics.  相似文献   

5.
It is known that the logic BI of bunched implications is a logic of resources. Many studies have reported on the applications of BI to computer science. In this paper, an extension BIS of BI by adding a sequence modal operator is introduced and studied in order to formalize more fine-grained resource-sensitive reasoning. By the sequence modal operator of BIS, we can appropriately express “sequential information” in resource-sensitive reasoning. A Gentzen-type sequent calculus SBIS for BIS is introduced, and the cut-elimination and decidability theorems for SBIS are proved. An extension of the Grothendieck topological semantics for BI is introduced for BIS, and the completeness theorem with respect to this semantics is proved. The cut-elimination, decidability and completeness theorems for SBIS and BIS are proved using some theorems for embedding BIS into BI.  相似文献   

6.
《Journal of Applied Logic》2014,12(2):192-207
Here-and-there models and equilibrium models were investigated as a semantical framework for answer-set programming by Pearce, Valverde, Cabalar, Lifschitz, Ferraris and others. The semantics of equilibrium logic is given in an indirect way: the notion of an equilibrium model is defined in terms of quantification over here-and-there models. We here give a direct semantics of equilibrium logic, stated for a modal language embedding the language of equilibrium logic.  相似文献   

7.
Normal systems of modal logic, interpreted as deontic logics, are unsuitable for a logic of conflicting obligations. By using modal operators based on a more complex semantics, however, we can provide for conflicting obligations, as in [9], which is formally similar to a fragment of the logic of ability later given in [2], Having gone that far, we may find it desirable to be able to express and consider claims about the comparative strengths, or degrees of urgency, of the conflicting obligations under which we stand. This paper, building on the formalism of the logic of ability in [2], provides a complete and decidable system for such a language.  相似文献   

8.
We consider a formal language whose logical syntax involves both modal and tense propositional operators, as well as sortal quantifiers, sortal identities and (second order) quantifiers over sortals. We construct an intensional semantics for the language and characterize a formal logical system which we prove to be sound and complete with respect to the semantics. Conceptualism is the philosophical background of the semantic system.  相似文献   

9.
Pauly  Marc  Parikh  Rohit 《Studia Logica》2003,75(2):165-182
Game Logic is a modal logic which extends Propositional Dynamic Logic by generalising its semantics and adding a new operator to the language. The logic can be used to reason about determined 2-player games. We present an overview of meta-theoretic results regarding this logic, also covering the algebraic version of the logic known as Game Algebra.  相似文献   

10.
Demri  Stéphane  Orłowska  Ewa 《Studia Logica》1999,62(2):177-200
In this paper a unified framework for dealing with a broad family of propositional multimodal logics is developed. The key tools for presentation of the logics are the notions of closure relation operation and monotonous relation operation. The two classes of logics: FiRe-logics (finitely reducible logics) and LaFiRe-logics (FiRe-logics with local agreement of accessibility relations) are introduced within the proposed framework. Further classes of logics can be handled indirectly by means of suitable translations. It is shown that the logics from these classes have the finite model property with respect to the class of -formulae, i.e. each -formula has a -model iff it has a finite -model. Roughly speaking, a -formula is logically equivalent to a formula in negative normal form without occurrences of modal operators with necessity force. In the proof we introduce a substantial modification of Claudio Cerrato's filtration technique that has been originally designed for graded modal logics. The main core of the proof consists in building adequate restrictions of models while preserving the semantics of the operators used to build terms indexing the modal operators.  相似文献   

11.
Relational semantics, given by Kripke frames, play an essential role in the study of modal and intuitionistic logic. In [4] it is shown that the theory of relational semantics is also available in the more general setting of substructural logic, at least in an algebraic guise. Building on these ideas, in [5] a type of frames is described which generalise Kripke frames and provide semantics for substructural logics in a purely relational form.In this paper we study full linear logic from an algebraic point of view. The main additional hurdle is the exponential. We analyse this operation algebraically and use canonical extensions to obtain relational semantics. Thus, we extend the work in [4], [5] and use their approach to obtain relational semantics for full linear logic. Hereby we illustrate the strength of using canonical extension to retrieve relational semantics: it allows a modular and uniform treatment of additional operations and axioms.Traditionally, so-called phase semantics are used as models for (provability in) linear logic [8]. These have the drawback that, contrary to our approach, they do not allow a modular treatment of additional axioms. However, the two approaches are related, as we will explain.  相似文献   

12.
Goranko  Valentin 《Studia Logica》2003,75(2):221-238
We give a complete axiomatization of the identities of the basic game algebra valid with respect to the abstract game board semantics. We also show that the additional conditions of termination and determinacy of game boards do not introduce new valid identities.En route we introduce a simple translation of game terms into plain modal logic and thus translate, while preserving validity both ways, game identities into modal formulae.The completeness proof is based on reduction of game terms to a certain minimal canonical form, by using only the axiomatic identities, and on showing that the equivalence of two minimal canonical terms can be established from these identities.  相似文献   

13.
Many powerful logics exist today for reasoning about multi-agent systems, but in most of these it is hard to reason about an infinite or indeterminate number of agents. Also the naming schemes used in the logics often lack expressiveness to name agents in an intuitive way.To obtain a more expressive language for multi-agent reasoning and a better naming scheme for agents, we introduce a family of logics called term-modal logics. A main feature of our logics is the use of modal operators indexed by the terms of the logics. Thus, one can quantify over variables occurring in modal operators. In term-modal logics agents can be represented by terms, and knowledge of agents is expressed with formulas within the scope of modal operators.This gives us a flexible and uniform language for reasoning about the agents themselves and their knowledge. This article gives examples of the expressiveness of the languages and provides sequent-style and tableau-based proof systems for the logics. Furthermore we give proofs of soundness and completeness with respect to the possible world semantics.  相似文献   

14.
The article focuses on representing different forms of non-adjunctive inference as sub-Kripkean systems of classical modal logic, where the inference from □A and □B to □AB fails. In particular we prove a completeness result showing that the modal system that Schotch and Jennings derive from a form of non-adjunctive inference in (Schotch and Jennings, 1980) is a classical system strictly stronger than EMN and weaker than K (following the notation for classical modalities presented in Chellas, 1980). The unified semantical characterization in terms of neighborhoods permits comparisons between different forms of non-adjunctive inference. For example, we show that the non-adjunctive logic proposed in (Schotch and Jennings, 1980) is not adequate in general for representing the logic of high probability operators. An alternative interpretation of the forcing relation of Schotch and Jennings is derived from the proposed unified semantics and utilized in order to propose a more fine-grained measure of epistemic coherence than the one presented in (Schotch and Jennings, 1980). Finally we propose a syntactic translation of the purely implicative part of Jaśkowski's system D2 into a classical system preserving all the theorems (and non-theorems) explicilty mentioned in (Jaśkowski, 1969). The translation method can be used in order to develop epistemic semantics for a larger class of non-adjunctive (discursive) logics than the ones historically investigated by Jaśkowski.  相似文献   

15.
In this paper we address the problem of combining a logic with nonmonotonic modal logic. In particular we study the intuitionistic case. We start from a formal analysis of the notion of intuitionistic consistency via the sequent calculus. The epistemic operator M is interpreted as the consistency operator of intuitionistic logic by introducing intuitionistic stable sets. On the basis of a bimodal structure we also provide a semantics for intuitionistic stable sets.  相似文献   

16.
Demri  Stéphane  Gabbay  Dov 《Studia Logica》2000,65(3):323-353
This work is divided in two papers (Part I and Part II). In Part I, we study a class of polymodal logics (herein called the class of "Rare-logics") for which the set of terms indexing the modal operators are hierarchized in two levels: the set of Boolean terms and the set of terms built upon the set of Boolean terms. By investigating different algebraic properties satisfied by the models of the Rare-logics, reductions for decidability are established by faithfully translating the Rare-logics into more standard modal logics. The main idea of the translation consists in eliminating the Boolean terms by taking advantage of the components construction and in using various properties of the classes of semilattices involved in the semantics. The novelty of our approach allows us to prove new decidability results (presented in Part II), in particular for information logics derived from rough set theory and we open new perspectives to define proof systems for such logics (presented also in Part II).  相似文献   

17.
文章在扩展博弈上,给出了多值逻辑的语义赋值博弈的一般框架,避免了博弈者在多值逻辑的语义博弈中声明无穷对象的问题;然后通过Eloise赢的策略定义博弈的语义概念——赋值,证明了多值逻辑的博弈语义与Tarski语义是等价的;最后,根据语义赋值博弈框架对经典逻辑进行了博弈化。  相似文献   

18.
The classical propositional logic is known to be sound and complete with respect to the set semantics that interprets connectives as set operations. The paper extends propositional language by a new binary modality that corresponds to partial recursive function type constructor under the above interpretation. The cases of deterministic and non-deterministic functions are considered and for both of them semantically complete modal logics are described and decidability of these logics is established. Presented by Melvin Fitting  相似文献   

19.
In this paper we argue that hybrid logic is the deductive setting most natural for Kripke semantics. We do so by investigating hybrid axiomatics for a variety of systems, ranging from the basic hybrid language (a decidable system with the same complexity as orthodox propositional modal logic) to the strong Priorean language (which offers full first-order expressivity).We show that hybrid logic offers a genuinely first-order perspective on Kripke semantics: it is possible to define base logics which extend automatically to a wide variety of frame classes and to prove completeness using the Henkin method. In the weaker languages, this requires the use of non-orthodox rules. We discuss these rules in detail and prove non-eliminability and eliminability results. We also show how another type of rule, which reflects the structure of the strong Priorean language, can be employed to give an even wider coverage of frame classes. We show that this deductive apparatus gets progressively simpler as we work our way up the expressivity hierarchy, and conclude the paper by showing that the approach transfers to first-order hybrid logic.A preliminary version of this paper was presented at the fifth conference on Advances in Modal Logic (AiML 2004) in Manchester. We would like to thank Maarten Marx for his comments on an early draft and Agnieszka Kisielewska for help with the proof reading.Special Issue Ways of Worlds II. On Possible Worlds and Related Notions Edited by Vincent F. Hendricks and Stig Andur Pedersen  相似文献   

20.
The relevant modal logic G is a simple extension of the logic RT, the relevant counterpart of the familiar classically based system T. Using the Routley–Meyer semantics for relevant modal logics, this paper proves three main results regarding G: (i) G is semantically complete, but only with a non-standard interpretation of necessity. From this, however, other nice properties follow. (ii) With a standard interpretation of necessity, G is semantically incomplete; there is no class of frames that characterizes G. (iii) The class of frames for G characterizes the classically based logic T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号