首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recruitment and suppression processes were studied in the swinging-pendulum paradigm (cf. P. N. Kugler & M. T. Turvey, 1987). The authors pursued the hypothesis that active recruitment of previously unmeasured degrees of freedom serves to stabilize an antiphase bimanual coordination pattern and thereby obviates the need for pattern switching from an antiphase to an in-phase coordination pattern, a key prediction of the H. Haken, J. A. S. Kelso, and H. Bunz (1985) model. In Experiment 1, 7 subjects swung single hand-held pendulums in time with an auditory metronome whose frequency increased. Pendulum motion changed from planar (2D) to elliptical (3D), and forearm motion (produced by elbow flexion-extension) was recruited with increasing movement rate for cycling frequencies typically above the pendulum's eigenfrequency. In Experiment 2, 7 subjects swung paired pendulums in either an in-phase or an antiphase coordinative mode as movement rate was increased. With the systematic increase in movement rate, the authors attempted to induce transitions from the antiphase to the in-phase coordinative pattern, with loss of stability the key mechanism of pattern change. Transitions from the antiphase to the in-phase coordinative mode were not observed. Pattern stability, as defined by the variability of the phase relation between the pendulums, was affected only a little by increasing movement rate. As in the single-pendulum case, pendulum motion changed from planar to elliptical, and forearm motion was recruited with increasing cycling frequency. Those results reveal a richer dynamics than previously observed in the pendulum paradigm and support the hypothesis that recruitment processes stabilize coordination in biomechanically redundant systems, thereby reducing the need for pattern switching.  相似文献   

2.
The authors' goal in this study was to probe the basis for an earlier, unexpected finding that preferred-frequency finger tapping tends to have higher frequencies and to be less stable for in-phase than for antiphase tasks. In follow-up experiments, 3 protocols were employed: a preferred-frequency replication in both coordination modes, a metronome-driven matching of the preferred frequencies to each of the coordination modes, and a frequency scaling of both modes. The original findings were affirmed for preferred frequency. Tapping to a metronome had a differential effect on in-phase and antiphase: A more stable coupling across frequencies was exhibited during in-phase. Under frequency scaling, the antiphase pattern decomposed at lower frequencies than did in-phase, but no phase transitions were observed. The loss of stable coordination in both modes was attended by sudden increases in frequency differences between fingers and by phase wandering. The emergence of those effects is discussed in light of asymmetric modifications to the Haken-Kelso-Bunz model (H. Haken, J. A. S. Kelso, & H. Bunz, 1985) and the task constraints of tapping.  相似文献   

3.
The authors' goal in this study was to probe the basis for an earlier, unexpected finding that preferred-frequency finger tapping tends to have higher frequencies and to be less stable for in-phase than for antiphase tasks. In follow-up experiments, 3 protocols were employed: a preferred-frequency replication in both coordination modes, a metronome-driven matching of the preferred frequencies to each of the coordination modes, and a frequency scaling of both modes. The original findings were affirmed for preferred frequency. Tapping to a metronome had a differential effect on in-phase and antiphase: A more stable coupling across frequencies was exhibited during in-phase. Under frequency scaling, the antiphase pattern decomposed at lower frequencies than did in-phase, but no phase transitions were observed. The loss of stable coordination in both modes was attended by sudden increases in frequency differences between fingers and by phase wandering. The emergence of those effects is discussed in light of asymmetric modifications to the Haken-Kelso-Bunz model (H. Haken, J. A. S. Kelso, & H. Bunz, 1985) and the task constraints of tapping.  相似文献   

4.
The authors investigated how the intention to passively perform a behavior and the intention to persist with a behavior impact upon the spatial and temporal properties of bimanual coordination. Participants (N = 30) were asked to perform a bimanual coordination task that demanded the continuous rhythmic extension-flexion of the wrists. The frequency of movement was scaled by an auditory metronome beat from 1.5 Hz, increasing to 3.25 Hz in.25-Hz increments. The task was further defined by the requirement that the movements be performed initially in a prescribed pattern of coordination (in-phase or antiphase) while the participants assumed one of two different intentional states: stay with the prescribed pattern should it become unstable or do not intervene should the pattern begin to change. Transitions away from the initially prescribed pattern were observed only in trials conducted in the antiphase mode of coordination. The time at which the antiphase pattern of coordination became unstable was not found to be influenced by the intentional state. In addition, the do-not-intervene set led to a switch to an in-phase pattern of coordination whereas the stay set led to phase wandering. Those findings are discussed within the framework of a dynamic account of bimanual coordination.  相似文献   

5.
In the present study, we investigated the contributions of motor and perceptual processes to directional constraints as observed during hand-foot coordination. Participants performed cyclical flexion-extension movements of the right hand and foot under two coordination modes: in-phase (isodirectional) and antiphase (non-isodirectional). Those tasks were performed either with full vision or no vision of the limbs. Depending on the position of the forearm (prone or supine), the coordination patterns were performed with similar and dissimilar neuro-muscular coupling with respect to their phylogenetic origin as antigravity muscles. Results showed that the antiphase pattern was more difficult to maintain than the in-phase pattern and that neuro-muscular coupling significantly influenced the coordination dynamics. Moreover, the effect of vision differed as a function of both neuro-muscular coupling and coordination mode. Under dissimilar neuro-muscular coupling, the presence of visual feedback stabilized the in-phase pattern and destabilized the antiphase pattern. In contrast, visual feedback did not influence pattern stability during conditions of similar neuro-muscular coupling. These results shed light on the complex interactions between motor and perceptual (visual) constraints during the production of hand-foot coordination patterns.  相似文献   

6.
Young (n = 7) and elderly (n = 7) subjects performed bimanual coordination patterns in the transverse plane according to the in-phase or antiphase mode. Sensory information was manipulated through visual (with or without vision of the limbs) and proprioceptive input (with or without vibratory stimuli on one limb). Movement patterns with vibrations showed higher deviations from the intended relative phase than did those without vibrations. This finding suggests that the proprioceptive information induced by the vibrations and the movement interfered, leading to a disruption of the coordination patterns. In addition, as compared with the elderly, the young subjects performed more stable movements under normal circumstances but were more strongly affected by vibratory stimuli during the performance of in-phase movements. During antiphase movements, both age groups experienced a decrease of pattern stability. Furthermore, the absence or presence of visual feedback influenced the performance of the young subjects more than that of the elderly. The presence of vision led to stable in-phase movements, whereas a decrease of pattern stability was observed for antiphase movements. In general, these results demonstrate that manipulation of feedback sources affects young subjects more than elderly ones, and this can be related to a reduced sensory sensitivity as a function of aging.  相似文献   

7.
A bimanual circle drawing task was employed to elucidate the dynamics of intralimb and interlimb coordination. Right-handed subjects were required to produce circles with both hands in either a symmetrical (mirror) mode (i.e. one hand moving clockwise, the other counter-clockwise) or in an asymmetrical mode (i.e. both hands moving clockwise or counter-clockwise). The frequency of movement was scaled by an auditory metronome from 1.50 Hz to 3.25 Hz in8 (8-sec) steps.In the asymmetrical mode,distortions ofthe movement trajectories, transient departures from the target pattern of coordination, and phase wandering were evident as movement frequency was increased. These features suggested loss of stability. Deviations from circular trajectories were most prominent for movements of the left hand. Transient departures from the required mode of coordination were also largely precipitated by the left hand. The results are discussed with reference to manual asymmetries and mechanisms of interlimb and intersegmental coordination.  相似文献   

8.
Anchoring strategies for learning a bimanual coordination pattern   总被引:1,自引:0,他引:1  
Anchoring has been defined as synchronizing a point in a movement cycle with an external stimulus (W. D. Byblow, R. G. Carson, & D. Goodman, 1994). Previously, investigators have examined anchoring during in-phase and antiphase movements. The present authors examined anchoring during acquisition of a novel bimanual coordination pattern. Participants performed a 90 degrees pattern at 1 Hz, with a 2- or 4-Hz metronome. No group differences were found in pattern performance; however, the 4-Hz group developed more consistent anchoring relative to the metronome. Mechanical anchor-point variability differed by hand, position (midpoint vs. endpoint), and direction (flexion vs. extension) but not by metronome frequency. Those results support and extend previous findings but leave unanswered questions regarding the benefits and effectiveness of anchoring during a 90 degrees pattern.  相似文献   

9.
We have proposed that the stability of bimanual coordination is influenced by the complexity of the representation of the task goals. Here, we present two experiments to explore this hypothesis. First, we examined whether a temporal event structure is present in continuous movements by having participants vocalize while producing bimanual circling movements. Participants tended to vocalize once per movement cycle when moving in-phase. In contrast, vocalizations were not synchronized with anti-phase movements. While the in-phase result is unexpected, the latter would suggest anti-phase continuous movements lack an event structure. Second, we examined the event structure of movements marked by salient turn-around points. Participants made bimanual wrist flexion movements and were instructed to move 'in synchrony' with a metronome, without specifying how they should couple the movements to the metronome. During in-phase movements, participants synchronized one hand cycle with every metronome beat; during anti-phase movements, participants synchronized flexion of one hand with one metronome beat and extension of the other hand with the next beat. The results are consistent with the hypothesis that the instability of anti-phase movements is related to their more complex (or absent) event representation relative to that associated with in-phase movements.  相似文献   

10.
This study, following a dynamic pattern approach, examines age-related differences in the stability of unimanual rhythmic perception-action patterns. Thirty-six children, aged 7, 9, and 11 years, attempted to synchronize their finger tapping to the beats of an auditory metronome, either “on the beat” (i.e., in-phase coordination), or “off the beat” (i.e., antiphase coordination). The temporal stability of these perception- action patterns was measured by the variability of the relative phase between taps and auditory events and by the critical frequency, that is, the frequency at which a loss of stability was observed when the metronome frequency was increased. Age-related differences in stability were found for both relative phase variability and critical frequency. These findings suggest that the relative phase dynamics underlying perception-action coordination patterns change with age in the direction of an increased temporal stability. Received: 29 June 1998 / Accepted: 15 December 1998  相似文献   

11.
The authors examined the manner in which self-selected movement frequencies are impacted upon by repeated engagement in an intralimb coordination task and by alterations in the inertial characteristics of the limb. Twelve healthy adult volunteers rhythmically flexed and extended their elbow and wrist joints at a comfortable self-established frequency in 1 of 2 modes of coordination (in-phase and antiphase), while grasping 1 of 3 weighted dowels (no-weight condition [0.03 kg], light weight condition [0.5 kg], heavy weight condition [1.0 kg]). The movement frequencies adopted by subjects on the 3rd of 3 weekly sessions, following more than 120 experimental trials, were appreciably higher than those obtained during an initial session. The addition of mass to the system had an inconsistent influence upon the preferred frequency of movement. When subjects' limbs were loaded with what was deemed to be a light weight (0.5 kg), the movement frequencies that were adopted were indistinguishable from those selected when there was no (0.03 kg) loading of the limbs. In contrast, when subjects' limbs were loaded with a relatively heavy weight (1 kg), the resulting self-selected movement frequencies were reliably lower than when there was no loading of the limbs. The adopted frequency of movement was also influenced in a reliable fashion by the mode of coordination in which the movements were prepared. Those results are discussed with reference to mechanical and neuromuscular constraints on coordination dynamics.  相似文献   

12.
The effects of correct and transformed visual feedback on rhythmic unimanual visuo-motor tracking were examined, focusing on tracking performance (accuracy and stability) and visual search behavior. Twelve participants (reduced to 9 in the analyses) manually tracked an oscillating visual target signal in phase (by moving the hand in the same direction as the target signal) and in antiphase (by moving the hand in the opposite direction), while the frequency of the target signal was gradually increased to probe pattern stability. Besides a control condition without feedback, correct feedback (representing the actual hand movement) or mirrored feedback (representing the hand movement transformed by 180 degrees) were provided during tracking, resulting in either in-phase or antiphase visual motion of the target and feedback signal, depending on the tracking mode performed. The quality (accuracy and stability) of in-phase tracking was hardly affected by the two forms of feedback, whereas antiphase tracking clearly benefited from mirrored feedback but not from correct feedback. This finding extends previous results indicating that the performance of visuo-motor coordination tasks is aided by visual feedback manipulations resulting in coherently grouped (i.e., in-phase) visual motion structures. Further insights into visuo-motor tracking with and without feedback were garnered from the visual search patterns accompanying task performance. Smooth pursuit eye movements only occurred at lower oscillation frequencies and prevailed during in-phase tracking and when target and feedback signal moved in phase. At higher frequencies, point-of-gaze was fixated at a location that depended on the feedback provided and the resulting visual motion structures. During in-phase tracking the mirrored feedback was ignored, which explains why performance was not affected in this condition. Point-of-gaze fixations at one of the end-points were accompanied by reduced motor variability at this location, reflecting a form of visuo-motor anchoring that may support the pick up of discrete information as well as the control of hand movements to a desired location.  相似文献   

13.
Kinematic (relative phase error), metabolic (oxygen consumption, heart rate) and attentional (baseline and cycling reaction times) variables were measured while participants practised a high energy-demanding, intrinsically unstable 90 degrees relative phase coordination pattern on independent bicycle ergometers. The variables were found to be strongly inter-correlated, suggesting a link between emerging performance stability with practice and minimal metabolic and attentional cost. The effects of practice of 90 degrees relative phase coordination on the performance of in-phase (0 degrees-phase) and antiphase (180 degrees-phase) coordination were investigated by measuring the relative phase attractor layouts and recording the metabolic and attentional cost of the three coordination patterns before and after practice. The attentional variables did not differ significantly between coordination patterns and did not change with practice. Before practice, the coordination performance was most accurate and stable for in-phase cycling, with antiphase next and 90 degrees-phase the poorest. However, metabolic cost was lower for antiphase than either in-phase or 90 degrees-phase cycling, and the pre-practice attractor layout deviated from that predicted on the basis of dynamic stability as an attractor state, revealing an attraction to antiphase cycling. After practice of 90 degrees-phase cycling, in-phase cycling remained the most accurate and stable, with 90 degrees-phase next and antiphase the poorest, but antiphase retained the lowest metabolic energy cost. The attractor layout had changed, with new attractors formed at the practised 90 degrees-phase pattern and its symmetrical partner of 270 degrees-phase. Considering both the pre- and post-practice results, attractors were formed at either a low metabolic energy cost but less stable (antiphase) pattern or at a more stable but higher metabolic energy cost (90 degrees-phase) pattern, but in neither case at the most stable and accurate (in-phase) pattern. The results suggest that energetic factors affect coordination dynamics and that coordination modes lower in metabolic energy expenditure may compete with dynamically stable modes.  相似文献   

14.
The in-phase and antiphase patterns of interlimb l:1 frequency locking were contrasted with respect to models of coordination dynamics in biological movement systems that are based on diffusive coupling, synaptic coupling, and synergetic principles. Predictions were made from each model concerning the stable relative phase phi between the rhythmic units, its standard deviation SDphi and the self-chosen coupled frequency omegasubc;. The experimental task involved human subjects oscillating two handheld pendulums either in-phase or antiphase. The eigenfrequencies of the two hand-pendulum systems were manipulated by varying the length and mass of each pendulum individually. Relative to an eigenfrequency difference of Delta equal to zero, |Deltaomega| > 0 displaced phi from phi = 0 and phi = pi, and amplified SDphi. omegasubc; decreased with |Deltaomega|. Both the displacement of phi and SDphi were greater in the antiphase mode. Additionally, the displacement of phi increased more sharply with |Delta| for antiphase than for in-phase coordination. In contrast, omegasubc; was identical for the two coordination modes. Of the models of interlimb coordination dynamics, the synergetic model was the most successful in addressing the pattern of dependencies of phi and SDphi. The specific forms of the functions relating omegasubc; and phi to Deltaomega pose challenges for all three models, however  相似文献   

15.
This study investigated the relation between postural movement and upper-limb coordination stability. Adults produced bimanual circles using in-phase and anti-phase coordination patterns in time to an increasing rate metronome (i.e., movement-time instruction) in the horizontal (e.g., tabletop) and vertical (e.g., "wall" perpendicular to body) planes. All participants produced the instructed in- and anti-phase patterns. Coordination stability (i.e., SD of relative phase) was larger for anti-phase than in-phase patterns in both planes; however, anti-phase coordination stability was lower in the vertical plane than in the horizontal plane. Torso movement was larger during anti-phase coordination patterns in the horizontal plane, whereas it was larger during in-phase coordination patterns in the vertical plane. These results indicate that different orientations of the same task can produce different results for stability of coordination. This information may be important for performing and learning complex motor-coordination movements (e.g., playing musical instruments).  相似文献   

16.
The influence of focal attention on the coordination dynamics in a bimanual circle drawing task was investigated. Six right-handed and seven left-handed subjects performed bimanual circling movements, in two modes of coordination, symmetrical or asymmetrical. The frequency of movement was scaled by an auditory metronome from 1.50 Hz to 3.00 Hz in 7 steps. On each trial, subjects were required to attend either to the dominant hand, to a neutral position, or to the nondominant hand.The uniformity of the relative tangential angle was lower in asymmetrical than in symmetrical conditions, but was not influenced by the direction of attention. In the asymmetrical mode, shifts in RTA relations, suggestive of loss of stability, were evident as the movement frequency was increased. Typically, these shifts were mediated by distortions of the trajectory of the nondominant limb. When the nondominant hand was the focus of attention, movements of this hand were more circular, and temporal variability was reduced, at the cost of a greater deviation from the target frequency. Movements of the dominant hand were not affected by the direction of attention. The findings show that although directed attention acts to modify the coordination dynamics, it does so primarily at the level of the individual hands, rather then in terms of the relation between them.  相似文献   

17.
Anchoring in cyclical movements has been defined as regions of reduced spatial or temporal variability [Beek, P. J. (1989). Juggling dynamics. PhD thesis. Amsterdam: Free University Press] that are typically found at movement reversal points. For in-phase and anti-phase movements, synchronizing reversal points with a metronome pulse has resulted in decreased anchor point variability and increased pattern stability [Byblow, W. D., Carson, R. G., & Goodman, D. (1994). Expressions of asymmetries and anchoring in bimanual coordination. Human Movement Science, 13, 3-28; Fink, P. W., Foo, P., Jirsa, V. K., & Kelso, J. A. S. (2000). Local and global stabilization of coordination by sensory information. Experimental Brain Research, 134, 9-20]. The present experiment examined anchoring during acquisition, retention, and transfer of a 90 degrees phase-offset continuous bimanual coordination pattern (whereby the right limb lags the left limb by one quarter cycle), involving horizontal flexion about the elbow. Three metronome synchronization strategies were imposed: participants either synchronized maximal flexion of the right arm (i.e., single metronome), both flexion and extension of the right arm (i.e., double metronome within-limb), or flexion of each arm (i.e., double metronome between-limb) to an auditory metronome. In contrast to simpler in-phase and anti-phase movements, synchronization of additional reversal points to the metronome did not reduce reversal point variability or increase pattern stability. Furthermore, practicing under different metronome synchronization strategies did not appear to have a significant effect on the rate of acquisition of the pattern.  相似文献   

18.
ABSTRACT Research on human rhythmic coordination has shown that the in-phase and antiphase coordination modes are typically stable and that the coordination of asymmetric effectors frequently exhibits fixed-point drift. The author extended research on symmetry breaking in coordination dynamics by examining a frequency-scaled unimanual pronation-supination task. The results showed symmetry breaking and fixed-point drift, with the radioulnar joint increasingly more phase advanced than the shoulder with increments in movement frequency. Hysteresis was also observed, as the relative phase patterns produced at 3 of the 4 movement frequencies were lower in the upward frequency scaling direction than in the downward direction. These results showed that the dynamic properties of symmetry breaking and fixed-point drift in unimanual pronation-supination movements were consistent with prior research and modeling. The hysteresis effect was explained as potentially being due to the control structures that organize this redundant coordination task.  相似文献   

19.
Interlimb coordination is subject to constraints. One major constraint has been described as a tendency for homologous muscle groups to be activated simultaneously. Another has been described as a biasing of limb segments to movement in the same direction. In 2 experiments, the 2 constraints were placed in opposition: In-phase or antiphase contraction of homologous muscles of contralateral limbs produced movement that was spatially antiphase or in-phase, respectively. Probability distributions of relative phase were obtained under manipulations of phase detuning and movement speed. They revealed that the equilibrium and stability of coordination were related, respectively, to spatial relative phase and muscular relative phase. Previously observed spatial and muscular constraints reflect a (possibly very general) factorization of attractor location and attractor strength in the dynamics of interlimb coordination.  相似文献   

20.
Two predictions arising from previous theoretical and empirical work which demonstrated that spontaneous changes of bimanual coordination patterns result from a loss of pattern stability (i.e., a nonequilibrium phase transition) were tested: (a) that the time it takes to intentionally switch from one pattern to another depends on the differential stability of the patterns themselves; and (b) that an intention, defined as an intended behavioral pattern, can change the dynamical characteristics, e.g., the overall stability of the behavioral patterns. Subjects moved both index fingers rhythmically at one of six movement frequencies while performing either an in-phase or antiphase pattern of finger coordination. On cue from an auditory signal, subjects switched from the ongoing pattern to the other pattern. The relative phase of movement between the two fingers was used to characterize the ongoing coordinative pattern. The time taken to switch between patterns, or switching time, and relative phase fluctuations were used to evaluate the modified pattern dynamics resulting from a subject's intention to change patterns. Switching from the in-phase to the antiphase pattern was significantly slower than switching in the opposite direction for all subjects. Both the mean and distribution of switching times in each direction were found to be in agreement with model predictions. movement frequency had little effect on switching time, a finding that is also consistent with the model. Relative phase fluctuations were significantly larger when moving in the antiphase pattern at the highest movement frequencies studied. The results show that, although intentional influences act to modify a coordinative pattern's intrinsic dynamics, the influence of these dynamics on the resulting behavior is always present and is particularly strong at high movement frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号