首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The question examined in this study is concerned with a possible functional dissociation between the hippocampal formation and the prefrontal cortex in spatial navigation. Wistar rats with hippocampal damage (inflicted by a bilateral lesion of the fimbria fornix), rats with damage to the medial prefrontal cortex, and control-operated rats were examined for their performance in either one of two different spatial tasks in a Morris water maze, a place learning task (requiring a locale system), or a response learning task (requiring a taxon system). Performance of the classical place learning (allocentric) task was found to be impaired in rats with lesions of the fimbria fornix, but not in rats with damage of the medial prefrontal cortex, while the opposite effect was found in the response learning (egocentric) task. These findings are indicative of a double functional dissociation of these two brain regions with respect to the two different forms of spatial navigation. When the place learning task was modified by relocating the platform, the impairment in animals with fimbria fornix lesions was even more pronounced than before, while the performance of animals with medial prefrontal cortex lesions was similar to that of their controls. When the task was again modified by changing the hidden platform for a clearly visible one (visual cue task), the animals with fimbria fornix lesions had, at least initially, shorter latencies than their controls. By contrast, in the animals with medial prefrontal cortex damage this change led to a slight increase in escape latency.  相似文献   

2.
In solving a spatial problem, animals can use a place, cue, or response strategy. The present research was designed to evaluate the role of dorsal striatum (DS) in spatial problem solving and to compare it with that of fimbria fornix (FF). Rats were trained with a place + cue task in a shallow pool, then were divided into three groups (DS, FF, control), and lesions were made in the corresponding areas. After retraining, four probe tests were given: Test 1 (start position moved), Test 2 (goal and start positions moved), Test 3 (invisible goal), and Test 4 (curtain test). The test results suggest that the DS and Control groups performed the original task by using the place strategy, whereas the FF group used the cue strategy, which strongly implies that the DS group was impaired in the use of the cue strategy. This research also provides evidence supporting the usefulness of a shallow pool in evaluating animal behavior.  相似文献   

3.
This study investigated the behavioral function of the medial caudate putamen (MCPu) in the solving of maze tasks. MCPu lesioned rats (n = 35) and control rats (n = 35) were trained for the place or cue task (the four baited arms and four unbaited arms task) in an eight-arm radial maze, which requires the win-stay or the win-shift strategy. In Experiment 1, in which the place task was used, MCPu lesioned rats could learn the task in the win-shift condition, but not in the win-stay condition. MCPu lesioned rats made a lot of unbaited errors in the win-stay condition, as they persistently chose adjacent arms. Control rats could learn the tasks in both conditions. In Experiment 2, in which the cue task was used, MCPu lesioned rats and control rats could learn the tasks in both the win-stay and the win-shift conditions. If anything, the performance of MCPu rats was a little better than that of control rats in the win-stay condition. The results of these two experiments revealed that the MCPu was involved in solving the win-stay place task, but not the win-shift place, win-stay cue, and win-shift cue tasks. These findings suggest that the MCPu plays an important role in utilizing both spatial information and switching foraging strategies flexibly and efficiently, that is, processing complicated visuospatial cognition.  相似文献   

4.
Behavioral data suggest that distinguishable orientations may be necessary for place learning even when distal cues define different start points in the room and a unique goal location. We examined whether changes in orientation are also important in place learning and navigation in a water T-maze. In Experiment 1, rats were trained to locate a hidden platform and given a no-platform probe trial after 16 and 64 trials with the maze moved to a new position. Direction and response strategies were more prevalent than a place strategy. In Experiment 2, acquisition of place, response and direction strategies was assessed in a water T-maze that was moved between two locations during training. Rats were impaired on the place task when the maze was translated (moved to the L or R) but were successful when the maze was rotated across trials. These data are consistent with findings from appetitive tasks.  相似文献   

5.
Recently, the vasopressin (AVP) innervation in the rat brain was shown to be restored in senescent rats following long-term testosterone administration. In order to investigate whether this restoration is accompanied by an improvement in learning and memory, both sham- and testosterone-treated young (4.5 months), middle-aged (20 months), and aged (31 months) male Brown-Norway rats were tested in a Morris water maze. All animals learned to localize a cued platform equally well, indicating that the ability to learn this task was not affected by sensory, motoric, or motivational changes with aging or testosterone treatment. There were no significant differences in retention following cue training. Subsequent training with a hidden platform in the opposite quadrant of the pool (place training) revealed impaired spatial learning in middle-aged and aged animals. Retention following place training was significantly impaired in the sham-treated aged rats as compared with sham-treated young rats. Testosterone treatment did not improve spatial learning nor retention of spatial information, but, on the contrary, impaired retention in young and middle-aged animals. The present results confirm earlier reports on an impairment of spatial learning and memory in senescent rats but fail to support a role of decreased plasma testosterone levels and central AVP innervation in this respect.  相似文献   

6.
Male Sprague-Dawley rats implanted with bilateral intracerebral guide cannulae were trained in the standard hidden platform version of the Morris water maze and given immediate posttraining infusions of the D2 dopamine receptor antagonist sulpiride (10.0 or 100.0 ng/side) or saline vehicle into the posteroventral caudate-putamen. Retention was tested 2 days later with a probe trial. Sulpiride-treated rats spent less time swimming near the trained platform location and more time in the periphery of the maze than controls, although their latency to reach the trained platform location was not significantly affected. The pattern of results suggests that whereas the posteroventral caudate-putamen seems to be involved in consolidation of memory in the Morris water maze, it may be involved in memory for procedural aspects of the task in a manner distinct from that of other brain regions such as the hippocampus.  相似文献   

7.
A considerable number of studies have demonstrated that hippocampal damage impairs the acquisition of a place response in rats. In Experiment 1, using a four-arm plus-shaped maze, we replicated this finding. Experiment 2 showed, however, that hippocampally damaged rats can learn a place response just as well as control rats when, during the training, a salient intramaze landmark indicates the position of the goal (the west arm). After reaching criterion, the hippocampal and control groups performed the task with the same degree of mastery during a transfer test in which the intramaze signal used during the acquisition was removed. In Experiment 3, the intramaze cue was substituted by an egocentric cue. The results revealed that both control and lesioned subjects learned the spatial problem well. However, a transfer test showed that control rats learned the task using a place response strategy but hippocampally lesioned animals used a rigid, hyperspecific strategy. Taken together, these results suggest that special training procedures which encourage variability in response versus perseveration make it possible to overcome the acquisition deficit normally observed in hippocampal rats.  相似文献   

8.
The Morris water maze is frequently used to evaluate the acquisition and retrieval of spatial memories. Few experiments, however, have investigated the effects of environmental cue saliency on the strength or persistence of such memories after a short vs. long post-acquisition interval. Using a Morris water maze, we therefore tested in rats the effect of the saliency of distal cues on the vividness of a recent (5 days) vs. remote (25 days) memory. Rats trained in a cue-enriched vs. a cue-impoverished context showed a better overall level of performance during acquisition. Furthermore, the probe trials revealed that the rats trained and tested in the cue-impoverished context (1) spent less time in the target quadrant at the 25-day delay, and (2) swam shorter distances in the target area, with fewer crossings at both 5- and 25-day delays, as compared to their counterparts trained and tested in the cue-enriched context. Thus, the memory trace formed in the cue-enriched context shows better resistance to time, suggesting an implication of cue saliency in the vividness of a spatial memory.  相似文献   

9.
In Experiment 1 rats were required to learn a Y-maze in which reward was made available after a given response (e.g. a left turn) regardless of which arm was used as the start-box. Subjects with lesions of the caudate-putamen showed a deficit on this response-learning task compared with control subjects (unoperated animals and rats having lesions of the posterior cortex). In Experiment 2 rats with caudate-putamen lesions were unimpaired when the direction of the turn required to reach the correct goal-box (identified by means of a salient visual intra-maze cue) varied from trial to trial. In the absence of salient intramaze cues, but with enriched room (extra-maze) cues, the rats with caudate-putamen lesions were superior to controls on this task. It is argued that caudate-putamen lesions disrupt a mechanism responsible for processing information about responses, but that the other (spatial) mechanisms responsible for maze-learning remain intact and that caudate-putamen lesions may enhance performance on spatial tasks for which information about responses is irrelevant.  相似文献   

10.
Several studies have shown that slight modifications in the standard reference spatial memory procedure normally used for allocentric learning in the Morris water maze and the radial maze, can overcome the classic deficit in allocentric navigation typically observed in rats with hippocampal damage. In these special paradigms, however, there is only intramaze manipulation of a salient stimulus. The present study was designed to investigate whether extramaze manipulations produce a similar outcome. With this aim a four-arm plus-shaped maze and a reference spatial memory paradigm were used, in which the goal arm was marked in two ways: by a prominent extramaze cue (intermittent light), which maintained a constant relation with the goal, and by the extramaze constellation of stimuli around the maze. Experiment 1 showed that, unlike the standard version of the task, using this special training procedure hippocampally-damaged rats could learn a place response as quickly as control animals; importantly, one day after reaching criterion, lesioned and control subjects performed the task perfectly during a transfer test in which the salient extramaze stimulus used during the acquisition was removed. However, although acquisition deficit was overcomed in these lesioned animals, a profound deficit in retention was detected 15 days later. Experiment 2 suggests that although under our special paradigm hippocampal rats can learn a place response, spatial memory only can be expressed when the requisites of behavioral flexibility are minimal. These findings suggest that, under certain circumstances, extrahippocampal structures are sufficient for building a coherent allocentric representation of space; however, flexible memory expression is dependent, fundamentally, on hippocampal functioning.  相似文献   

11.
Two experiments were conducted to examine the effects of bilateral hippocampus (Hp) and area parahippocampalis (APH) lesions in pigeons on the acquisition of a visual and spatial task. In Experiment 1, pigeons were trained on three successive six-pair concurrent discrimination tasks, each using a novel set of stimuli. There was no difference between control unoperated pigeons and Hp-APH pigeons in terms of the number of sessions required to learn either the first, second, or third concurrent discrimination task. In Experiment 2, the same pigeons were trained on an open-field spatial task similar in many ways to the radial-arm maze task used with rats. In contrast to the absence of impairments on the visual concurrent discrimination task, pigeons with Hp-APH lesions were severely impaired on the acquisition of the spatial task. These findings support the view that the Hp-APH in pigeons is important for the processing of spatial, rather than visual information.  相似文献   

12.
We investigated whether the pretreatment with vitamins E (alpha-tocopherol) and C (ascorbic acid) would act on ovariectomy-induced memory deficits in Morris water maze tasks. Adult female Wistar rats were divided into three groups: (1) naive (control), (2) sham (submitted to surgery without removal of ovaries) and (3) ovariectomized. Thirty days after surgery, they were trained in the Morris water maze in order to verify ovariectomy effects both on reference and working memory tasks. Results show that ovariectomized rats presented impairment in spatial navigation in the acquisition phase, as well as in the time spent in target quadrant and in the latency to cross over the location of the platform in test session, when compared to naive and sham groups (controls), in the reference memory task. Ovariectomy did not affect performance in the working memory task. Confirming our hypothesis, ovariectomized rats pretreated for 30 days with vitamins E and C had those impairments prevented. We conclude that ovariectomy significantly impairs spatial reference learning/memory and that pretreatment with vitamins E and C prevents such effect. Assuming this experimental memory impairment might mimic, at least in part, the cognitive deficit sometimes present in the human condition of lack of reproductive hormones, our findings lend support to a novel therapeutic strategy, based on vitamins E and C, to cognitive impairments in post-menopausal women.  相似文献   

13.
These experiments examined the release of acetylcholine in the hippocampus and striatum when rats were trained, within single sessions, on place or response versions of food-rewarded mazes. Microdialysis samples of extra-cellular fluid were collected from the hippocampus and striatum at 5-min increments before, during, and after training. These samples were later analyzed for ACh content using HPLC methods. In Experiment 1, ACh release in both the hippocampus and striatum increased during training on both the place and response tasks. The magnitude of increase of training-related ACh release in the striatum was greater in rats trained on the response task than in rats trained on the place task, while the magnitude of ACh release in the hippocampus was comparable in the two tasks. Experiment 2 tested the possibility that the hippocampus was engaged and participated in learning the response task, as well as the place task, because of the availability of extra-maze cues. Rats were trained on a response version of a maze under either cue-rich or cue-poor conditions. The findings indicate that ACh release in the hippocampus increased similarly under both cue conditions, but declined during training on the cue-poor condition, when spatial processing by the hippocampus would not be suitable for solving the maze. In addition, high baseline levels of ACh release in the hippocampus predicted rapid learning in the cue-rich condition and slow learning in the cue-poor condition. These findings suggest that ACh release in the hippocampus augments response learning when extra-maze cues can be used to solve the maze but impairs response learning when extra-maze cues are not available for use in solving the maze.  相似文献   

14.
This paper reports a series of three experiments that tested the “spatial-mapping” and “working-memory” theories of hippocampal function. The experimental designs incorporate separate reference- and working-memory procedures of a water-escape task, using both spatial and non-spatial learning. In Experiment 1 (Reference memory), rats with hippocampal (HC) or cortical (CC) lesions and unoperated (UNOP) rats learned to swim to a rigid visible escape platform while avoiding contact with a floating one. In the nonspatial task, the platforms each occupied any of 8 possible positions in the pool over successive trials but differed in appearance. In the spatial task, the platforms were of identical appearance but the safe one always occupied a single fixed location. The HC rats showed a highly specific spatial learning impairment but did learn to perform consistently above chance towards the end of training. In Experiment 2 (working memory), new groups of rats were trained on similar spatial and nonspatial tasks, but the platform designated correct-in terms of its visual appearance or its spatial location-was randomly changed each day. No animal learned the nonspatial task despite extensive training. Performance on the spatial version unexpectedly revealed an impairment in the CC as well as the HC group relative to the UNOP rats. However, the HCs again performed at above chance levels and demonstrated rapid (I-trial) spatial learning towards the end training. Experiment 3 used a place navigation matching-to-sample task examine spatial working memory further. Each day, an underwater platform was hidden at any of 4 possible locations, and the rats were given 2 trials to search for it. Both UNOP and CC rats located the platform faster on Trial 2 than on Trial 1, even when the inter-trial interval was long as 30min. HC rats were no faster on Trial 2 than on Trial 1. We conclude that hippocampal lesions (1) severely but partially impair spatial but not visual reference memory and (2) give rise to different patterns impairment in different working-mermory tasks. The results are a chal lenge to both the spatial-mapping and working-memory theories.  相似文献   

15.
The main purpose of the present research was to investigate the ability of rats to learn a 12-arm radial maze task that requires the concurrent utilization of both spatial and intramaze cue information. The task involves in a single trial both place and cue learning as well as reference memory (RM) and working memory (WM). Since the animal can choose place and cue arms in any order, the strategies employed to learn the task can be studied as well as the kinds of memory errors that are made. The results of Experiment 1 showed that the number of errors made on the place and cue components of the task did not differ, and that more RM than WM errors were made early during learning. As the task was learned, the animals tended to choose the place arms before choosing the intramaze cue arms, thus suggesting that a spatial strategy was employed first followed by a cue strategy. In Experiment 2 lesions of the fimbria-fornix resulted in temporary impairments in both RM and WM that were especially apparent on the spatial component of the task. The lesioned rats also switched from choosing mostly place arms early during the trial to choosing more cue arms. While fimbria-fornix lesioned rats recovered from the memory impairments with training, the change in response strategy persisted throughout postoperative testing. The procedure of combining both spatial and non-spatial components concurrently in the same task should prove of value in studying response strategies in animals.  相似文献   

16.
The effects of age on cue learning, spatial reference memory, and strategy preference were assessed in B6 × SJL F1 mice by using the Morris water maze. This mouse strain is of particular interest because it is the background strain for a common transgenic model of Alzheimer's disease, the Tg2576 mouse, which develops plaques and other neurobiological markers of pathology beginning at 8 mo and increasing in severity with advanced age. In the current study, 12- and 23-mo-old C57B6 × SJL F1 mice were serially trained in cue and place versions of the Morris water maze task. At the completion of training, mice received a strategy probe test in which place (hidden) and cue (visible) strategies were in competition. Cue and spatial learning ability was maintained between 12 and 23 mo of age; however, on the strategy preference probe test, the 23-mo-old mice exhibited a significant bias toward the selection of a cue strategy. There was no relationship between strategy preference in the probe test and spatial learning ability, but the 23-mo-old mice did exhibit a strong trend toward shorter latencies during visible platform training, possibly reflecting the enhanced function of striatal-based neural systems in aging. These data demonstrate that 23-mo-old C57B6 × SJL F1 mice are capable of effective place learning, but if a place strategy is pitted against the use of a cue strategy, the use of a cue strategy predominates in the aged mice. The strategy preference observed here may reflect an emergence of differential processing in underlying brain circuitry with age in the B6 × SJL F1 mouse strain.  相似文献   

17.
The present work assessed the effects of intracerebroventricular injections of rh recombined human nerve growth factor (rh NGF) (5 micrograms/2.5 microl) at postnatal days 12 and 13 upon the development of spatial learning capacities. The treated rats were trained at the age of 22 days to escape onto an invisible platform at a fixed position in space in a Morris navigation task. For half of the subjects, the training position was also cued, a procedure aimed at facilitating escape and at reducing attention to the distant spatial cues. Later, at the age of 6 months, all the rats were trained in a radial-arm maze task. Treatment effects were found in both immature and adult rats. The injection of NGF improved the performance in the Morris navigation task in both training conditions. There was a significant reduction in the escape latency and an increased bias toward the training platform quadrant during probe trials. The most consistent effect was the precocious development of an adult-like spatial memory. In the radial-arm maze, the NGF-treated rats made significantly fewer reentries than vehicle rats and this effect was particularly marked in the treated female rats. Taken together, these experiments reveal that the development and the maintenance of an accurate spatial representation are tightly related to the development of brain structures facilitated by the action of NGF. Moreover, these experiments demonstrate that an acute pharmacological treatment that leads to a transient modification in the choline acetyltransferase activity can induce a behavioral change long after the treatment.  相似文献   

18.
Emotionally charged experiences alter memory storage via the activation of hormonal systems. Previously, we have shown that compared with rats trained for a massed spatial learning task in the water maze in warm water (25°C), animals that were trained in cold water (19°C) performed better and showed higher levels of the stress hormone corticosterone. Here, we examined whether manipulating the levels of corticosterone can determine the strength of spatial information acquisition and retention. Rats were injected with metyrapone (25, 50, and 75 mg/kg, i.p.) or with corticosterone (10 and 25 mg/kg, i.p.) and trained in a massed spatial task in either cold (19°C) or warm (25°C) water. We found that whereas animals injected with vehicle performed well in the spatial task in cold water (moderate stress), rats injected with the intermediate metyrapone dose showed impairment in performance. Moreover, whereas animals injected with vehicle on average did not perform well in warm water (mild stress), rats injected with the lower corticosterone dose showed improvement in performance in warm water. These two mirror experiments of corticosterone blockade and enhancement strongly suggest that corticosterone is instrumental in the acquisition and retention of the spatial learning task.  相似文献   

19.
While estrogen enhances performance on some tasks of learning and memory, it has impairing or no effects on others. It has been proposed that estrogen differentially affects performance on various tasks of learning and memory by influencing the strategy used to solve a task. The goal of the present study was to determine if estrogen would influence strategy selection in the Morris water maze. Long-Evans rats were ovariectomized and implanted with Silastic capsules containing 25% estradiol diluted in cholesterol or 100% cholesterol. Rats were trained in a water maze task in which multiple strategies were available for use to locate a hidden escape platform that was moved to a new location for each set of four daily trials. During 10 days of acquisition trials, a visible floating landmark was always located in a static position relative to the hidden escape platform. Additionally, fixed extramaze cues visible to the animals surrounded the maze. Following acquisition, 2 days of probe trials were conducted in which the static landmark was removed. Estrogen replacement in ovariectomized rats resulted in impaired performance across 10 days of acquisition. Additionally, while removal of the visible landmark during the probe trials had no effect on the performance of the females receiving estrogen, it significantly disrupted performance of females receiving cholesterol treatment. These results indicate that estrogen replacement in ovariectomized rats biases an animal against using a landmark or static cue to aid in the location of a hidden escape platform in the water maze.  相似文献   

20.
Rats were trained to escape to visible or to hidden platforms in a swimming pool and then given probe trials, which requires that they search for a platform that had been removed or repositioned. To solve the tasks, they simultaneously used a number of behavioral strategies including position responses, cue responses, and place responses. On the probe trials, they not only displayed behaviors that were reinforced during training, including searches in the quadrant where the platform had been located and swims across the point where the platform had been, but they also displayed novel behaviors, including swims to previously used start points on the pool wall and swims that retraced previously used routes to the platform. Rats trained on the place task (hidden platform) made more swims across the platform's previous location, whereas rats trained on the cue task (visible platform) made more returns to previously used start points. When the number of start points or number of platform locations used during training was varied, swimming patterns on the probe trials also changed. Increases in the number of start points produced more returns to start points, whereas increases in the number of platform locations produced more searches for platforms. The results reveal that rats make coextensive use of all relevant strategies to solving spatial navigation tasks. Also, their search patterns on probe trials reflect previously reinforced behaviors as well as novel unconditioned search behaviors. The implications of the results for studies of the neural basis of spatial navigation and/or animal models of human memory are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号