首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Extinction is a form of inhibitory learning that suppresses a previously conditioned response. Both fear and drug seeking are conditioned responses that can lead to maladaptive behavior when expressed inappropriately, manifesting as anxiety disorders and addiction, respectively. Recent evidence indicates that the medial prefrontal cortex (mPFC) is critical for the extinction of both fear and drug-seeking behaviors. Moreover, a dorsal-ventral distinction is apparent within the mPFC, such that the prelimbic (PL-mPFC) cortex drives the expression of fear and drug seeking, whereas the infralimbic (IL-mPFC) cortex suppresses these behaviors after extinction. For conditioned fear, the dorsal-ventral dichotomy is accomplished via divergent projections to different subregions of the amygdala, whereas for drug seeking, it is accomplished via divergent projections to the subregions of the nucleus accumbens. Given that the mPFC represents a common node in the extinction circuit for these behaviors, treatments that target this region may help alleviate symptoms of both anxiety and addictive disorders by enhancing extinction memory.Emotional memories, both in the aversive and appetitive domains, are important for guiding behavior. Regulating the expression of these memories is critical for mental health. Extinction of classical conditioning is one form of emotion regulation that is easily modeled in animals. In the aversive domain, a conditioned stimulus (CS) is typically paired with a shock, while in the appetitive domain, a CS is paired with the availability of food or drug reward. Repeated presentation of the CS in the absence of the reinforcer leads to extinction of conditioned fear or drug-seeking behaviors. In recent years, there have been great advances in our understanding of the neural circuitry responsible for this form of inhibitory learning (for reviews, see Cammarota et al. 2005; Maren 2005; Myers and Davis 2007; Quirk and Mueller 2008). The prefrontal cortex has been strongly implicated in fear expression (Powell et al. 2001; Vidal-Gonzalez et al. 2006; Corcoran and Quirk 2007) and fear extinction (Herry and Garcia 2002; Milad and Quirk 2002; Gonzalez-Lima and Bruchey 2004; Hugues et al. 2004; Burgos-Robles et al. 2007; Hikind and Maroun 2008; Lin et al. 2008; Mueller et al. 2008; Sotres-Bayon et al. 2008), and more recently, in expression of drug seeking after extinction (Peters et al. 2008a,b). These findings are consistent with a well-documented role of the prefrontal cortex in executive function and emotional regulation (Miller 2000; Fuster 2002; Quirk and Beer 2006; Sotres-Bayon et al. 2006).In this review, we propose that the medial prefrontal cortex (mPFC) regulates the expression of both fear and drug memories after extinction, through divergent projections to the amygdala and nucleus accumbens, respectively. Extinction failure in the aversive domain can lead to anxiety disorders (Delgado et al. 2006; Milad et al. 2006), while extinction failure in the appetitive domain can lead to relapse in addicted subjects (Kalivas et al. 2005; Garavan and Hester 2007). A common neural circuit for extinction of fear and drug memories would suggest shared mechanisms and treatment strategies across both domains.  相似文献   

2.
Recent research suggests that drug-related memories are reactivated after exposure to environmental cues and may undergo reconsolidation, a process that can strengthen memories. Conversely, reconsolidation may be disrupted by certain pharmacological agents such that the drug-associated memory is weakened. Several studies have demonstrated disruption of memory reconsolidation using a drug-induced conditioned place preference (CPP) task, but no studies have explored whether cocaine-associated memories can be similarly disrupted in cocaine self-administering animals after a cocaine priming injection, which powerfully reinstates drug-seeking behavior. Here we used cocaine-induced CPP and cocaine self-administration to investigate whether the N-methyl-D-aspartate receptor antagonist (+)-5methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) given just prior to reactivation sessions would suppress subsequent cocaine-primed reinstatement (disruption of reconsolidation). Systemic injection of MK-801 (0.05 or 0.20 mg/kg administered intraperitoneally) in rats just prior to reactivation of the cocaine-associated memory in the CPP context attenuated subsequent cocaine-primed reinstatement, while no disruption occurred in rats that did not receive reactivation in the CPP context. However, in rats trained to self-administer cocaine, systemic administration of MK-801 just prior to either of two different types of reactivation sessions had no effect on subsequent cocaine-primed reinstatement of lever-pressing behavior. Thus, systemic administration of MK-801 disrupted the reconsolidation of a cocaine-associated memory for CPP but not for self-administration. These findings suggest that cocaine-CPP and self-administration do not use similar neurochemical processes to disrupt reconsolidation or that cocaine-associated memories in self-administering rats do not undergo reconsolidation, as assessed by lever-pressing behavior under cocaine reinstatement conditions.The ability to disrupt previously consolidated memories in a reactivation-dependent manner is thought to be due to the disruption of a memory reconsolidation process. This disruption of reconsolidation has been observed in a wide variety of tasks and species (Nader et al. 2000b; Sara 2000; Alberini 2005; Riccio et al. 2006). Early reconsolidation experiments primarily focused on aversive learning paradigms, with an emphasis on disruption of reconsolidation as a potential treatment for posttraumatic stress disorder (Misanin et al. 1968; Nader et al. 2000a; Debiec and Ledoux 2004; Brunet et al. 2008). Only more recently have investigators demonstrated that appetitive memories also undergo reconsolidation; most, but not all (Yim et al. 2006), studies found a disruption of expression for the drug-associated memory, suggesting the potential to target the reconsolidation process as a treatment for drug addiction (Lee et al. 2005; Miller and Marshall 2005; Milekic et al. 2006; Valjent et al. 2006; Brown et al. 2007; Kelley et al. 2007; Sadler et al. 2007; Fricks-Gleason and Marshall 2008; Milton et al. 2008a, b).Miller and Marshall (2005) showed that reconsolidation of cocaine conditioned place preference (CPP) in the rat could be disrupted by either pre- or post-treatment of a phosphorylation inhibitor of extracellular signal-regulated kinase (1/2) (ERK) in a reactivation-dependent manner. Other studies have shown that protein synthesis inhibitors (Milekic et al. 2006), a matrix metalloproteinase (MMP) inhibitor (Brown et al. 2007), a β-noradrenergic receptor antagonist (Bernardi et al. 2006; Robinson and Franklin 2007a; Fricks-Gleason and Marshall 2008), and an N-methyl-D-aspartate (NMDA) receptor antagonist (Kelley et al. 2007; Sadler et al. 2007) can also disrupt the reconsolidation of drug-associated CPP memories. Studies by Lee and colleagues have shown that Zif268 antisense oligodeoxynucleotide infused into the basolateral amygdala prior to reactivation of memory for a cocaine-associated cue (the conditioned stimulus or CS) disrupts the ability of cocaine-associated cues to establish subsequent acquisition of a new instrumental response (Lee et al. 2005), and the ability of a drug-associated cue to induce relapse under a second-order schedule (Lee et al. 2006a). Thus, cocaine-associated memories appear to undergo reconsolidation in both Pavlovian and operant conditioning paradigms.Relapse to drug-seeking or drug-taking behavior can occur after re-exposure to three types of stimuli: the drug itself, drug-associated contextual and discrete cues, and stress; and all of these may promote relapse in humans (for review, see Epstein et al. 2006). Only a few CPP studies (Valjent et al. 2006; Brown et al. 2007) and no self-administration studies to our knowledge have tested whether the drug-associated memory can be rendered susceptible to disruption by pharmacological agents such that subsequent cocaine-primed reinstatement is suppressed. This drug-primed effect is observed in humans, producing relapse (Ludwig et al. 1974; Jaffe et al. 1989), and in rats, producing robust reinstatement of drug-seeking behavior in both CPP and self-administration tasks (McFarland and Ettenberg 1997; McFarland and Kalivas 2001; Sanchez and Sorg 2001; Kalivas and McFarland 2003). The development of a treatment strategy that makes use of the reconsolidation process will ultimately need to be powerful enough to diminish drug-seeking behavior in the presence of sizable doses of the drug itself. Therefore, the primary goal of this study was to determine whether drug-primed reinstatement could be suppressed in rats that have the memory reactivated in the presence of a pharmacological agent in cocaine self-administering rats. Since we previously have demonstrated the ability to disrupt cocaine-primed reinstatement only in animals in which the memory was reactivated using cocaine-induced CPP, we also tested the extent to which the same parameters used to disrupt reconsolidation in a cocaine-induced CPP task would disrupt reconsolidation in a cocaine self-administration task under conditions of drug-induced reinstatement.To examine this question, we chose the noncompetitive NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801). MK-801 has been shown to disrupt reconsolidation of spatial tasks (Przybyslawski and Sara 1997), fear tasks (Lee et al. 2006b), amphetamine-induced CPP (Sadler et al. 2007), cocaine-induced CPP (Kelley et al. 2007), and sucrose self-administration (Lee and Everitt 2008). Importantly, the two studies examining CPP using MK-801 did not explore whether MK-801 suppressed drug-seeking behavior in a manner that was dependent on whether the memory was reactivated, leaving open the possibility that it was not a reconsolidation process that was disrupted by MK-801.Here we demonstrate that MK-801 injected prior to cocaine-primed reinstatement of CPP disrupted subsequent cocaine-primed reinstatement of CPP, and this disruption was dependent on CPP contextual reactivation since injection of MK-801 and cocaine in the home cage did not disrupt subsequent cocaine-primed reinstatement of CPP. However, drug-seeking behavior in animals trained for cocaine self-administration was not disrupted when rats were reactivated under the same parameters that disrupted cocaine-induced CPP or when rats were given a reactivation session identical to their self-administration sessions. We thus demonstrate for the first time that memories associated with cocaine-induced CPP and cocaine self-administration are not similarly susceptible to disruption by MK-801.  相似文献   

3.
The role of the cerebellum in eyeblink conditioning is well established. Less work has been done to identify the necessary conditioned stimulus (CS) pathways that project sensory information to the cerebellum. A possible visual CS pathway has been hypothesized that consists of parallel inputs to the pontine nuclei from the lateral geniculate nucleus (LGN), superior colliculus (SC), pretectal nuclei, and visual cortex (VCTX) as reported by Koutalidis and colleagues in an earlier paper. The following experiments examined whether electrical stimulation of neural structures in the putative visual CS pathway can serve as a sufficient CS for eyeblink conditioning in rats. Unilateral stimulation of the ventral LGN (Experiment 1), SC (Experiment 2), or VCTX (Experiment 3) was used as a CS paired with a periorbital shock unconditioned stimulus. Stimulation was delivered to the hemisphere contralateral to the conditioned eye. Rats in all experiments were given five 100-trial sessions of paired or unpaired eyeblink conditioning with the stimulation CS followed by three paired sessions with a light CS. Stimulation of each visual area when paired with the unconditioned stimulus supported acquisition of eyeblink conditioned responses (CRs) and substantial savings when switched to a light CS. The results provide evidence for a unilateral parallel visual CS pathway for eyeblink conditioning that includes the LGN, SC, and VCTX inputs to the pontine nuclei.Pavlovian eyeblink (eyelid closure and nictitating membrane movement) conditioning is established by pairing a conditioned stimulus (CS), usually a tone or light, with an unconditioned stimulus (US) that elicits the eyeblink reflex. The eyeblink conditioned response (CR) emerges over the course of paired training, occurs during the CS, and precedes the US (Gormezano et al. 1962; Schneiderman et al. 1962). Neurobiological investigations of Pavlovian eyeblink conditioning have primarily focused on the cerebellum, which is the site of memory formation and storage (Thompson 2005). The anterior interpositus nucleus is necessary for acquisition and retention of the eyeblink CR (Lavond et al. 1985; Krupa and Thompson 1997; Freeman Jr. et al. 2005; Thompson 2005; Ohyama et al. 2006). Lobule HVI and the anterior lobe of the cerebellar cortex (lobules I–V) contribute to acquisition, retention, and timing of the CR (McCormick and Thompson 1984; Perrett et al. 1993; Perrett and Mauk 1995; Attwell et al. 1999, 2001; Medina et al. 2000; Nolan and Freeman Jr. 2005; Nolan and Freeman 2006). The brainstem nuclei that comprise the proximal ends of the CS and US input pathways to the cerebellum have also been identified.The pontine nuclei (PN) and inferior olive (IO) receive CS and US information, respectively, and are the primary sensory relays into the interpositus nucleus and cerebellar cortex (Thompson 2005). Conditioned stimulus information converges in the PN, which receives projections from lower brainstem, thalamus, and cerebral cortex (Glickstein et al. 1980; Brodal 1981; Schmahmann and Pandya 1989; Knowlton et al. 1993; Campolattaro et al. 2007). The lateral pontine nuclei (LPN) are the sources of auditory CS information projected into the cerebellum. Lesions of the LPN block CR retention to a tone CS, but have no effect on CRs to a light CS (Steinmetz et al. 1987). Thus, CS inputs from different sensory modalities may be segregated at the level of the PN. Neurons in the PN project CS information into the contralateral cerebellum via mossy fibers in the middle cerebellar peduncle that synapse primarily on granule cells in the cerebellar cortex and on neurons in the deep nuclei (Bloedel and Courville 1981; Brodal 1981; Steinmetz and Sengelaub 1992). Stimulation of the PN acts as a supernormal CS supporting faster CR acquisition than conditioning with peripheral stimuli (Steinmetz et al. 1986, 1989; Rosen et al. 1989; Steinmetz 1990; Tracy et al. 1998; Freeman Jr. and Rabinak 2004). The primary focus of these experiments was to investigate the most proximal components of the CS pathway in eyeblink conditioning. There has been less emphasis on identifying the critical CS pathways that project information to the PN.Recent studies using lesions, inactivation, stimulation, and neural tract tracing have provided evidence that the auditory CS pathway that is necessary for acquisition and retention of eyeblink conditioning is comprised of converging inputs to the medial auditory thalamic nuclei (MATN), and a direct ipsilateral projection from the MATN to the PN (Halverson and Freeman 2006; Campolattaro et al. 2007; Freeman et al. 2007; Halverson et al. 2008). Unilateral lesions of the MATN, contralateral to the conditioned eye, block acquisition of eyeblink CRs to a tone CS but have no effect on conditioning with a light CS (Halverson and Freeman 2006). Inactivation of the MATN with muscimol blocks acquisition and retention of CRs to an auditory CS, and decreases metabolic activity in the PN (Halverson et al. 2008). The MATN has a direct projection to the PN and stimulation of the MATN supports rapid CR acquisition (Campolattaro et al. 2007). Our current model of the auditory CS pathway consists of converging inputs to the MATN, and direct unilateral thalamic input to the PN (Halverson et al. 2008).Less work has been done to identify the visual CS pathway necessary for eyeblink conditioning. A possible parallel visual CS pathway has been hypothesized, which includes parallel inputs to different areas of the PN from the lateral geniculate nucleus (LGN), superior colliculus (SC), visual cortex (VCTX), and pretectal nuclei (Koutalidis et al. 1988). In the Koutalidis et al. study, lesions of the LGN, SC, VCTX, or pretectal nuclei alone had only a partial effect on CR acquisition with a light CS. Lesions of any two of these structures together produced a more severe impairment on acquisition and combined lesions of all of these areas completely blocked CR acquisition to a light CS (Koutalidis et al. 1988). Each visual area investigated in the Koutalidis et al. study has a direct projection to the PN that could be important for eyeblink conditioning. The ventral LGN projects to the medial, and to a lesser extent, the lateral PN (Graybiel 1974; Wells et al. 1989). The superficial, intermediate, and deep layers of SC send projections to both the dorsomedial and dorsolateral PN (Redgrave et al. 1987; Wells et al. 1989). The VCTX has a direct projection to the rostral and lateral portions of the PN (Glickstein et al. 1972; Baker et al. 1976; Mower et al. 1980; Wells et al. 1989). The pretectal nuclei also have a direct projection to both the medial and lateral PN (Weber and Harting 1980; Wells et al. 1989). However, stimulation of the anterior pretectal nucleus is not an effective CS for eyeblink conditioning (Campolattaro et al. 2007). The failure to establish conditioning with stimulation of the anterior pretectal nucleus as a CS suggests that there may be differences in the efficacy of the various visual inputs to the PN for cerebellar learning. The following experiments investigated the sufficiency of stimulation of the LGN, SC, or primary VCTX as a CS for eyeblink conditioning in rats.  相似文献   

4.
Long-term potentiation (LTP) is typically studied using either continuous high-frequency stimulation or theta burst stimulation. Previous studies emphasized the physiological relevance of theta frequency; however, synchronized hippocampal activity occurs over a broader frequency range. We therefore tested burst stimulation at intervals from 100 msec to 20 sec (10 Hz to 0.05 Hz). LTP at Schaffer collateral–CA1 synapses was obtained at intervals from 100 msec to 5 sec, with maximal LTP at 350–500 msec (2–3 Hz, delta frequency). In addition, a short-duration potentiation was present over the entire range of burst intervals. We found that N-methyl-d-aspartic acid (NMDA) receptors were more important for LTP induction by burst stimulation, but L-type calcium channels were more important for LTP induction by continuous high-frequency stimulation. NMDA receptors were even more critical for short-duration potentiation than they were for LTP. We also compared repeated burst stimulation with a single primed burst. In contrast to results from repeated burst stimulation, primed burst potentiation was greater when a 200-msec interval (theta frequency) was used, and a 500-msec interval was ineffective. Whole-cell recordings of postsynaptic membrane potential during burst stimulation revealed two factors that may determine the interval dependence of LTP. First, excitatory postsynaptic potentials facilitated across bursts at 500-msec intervals but not 200-msec or 1-sec intervals. Second, synaptic inhibition was suppressed by burst stimulation at intervals between 200 msec and 1 sec. Our data show that CA1 synapses are more broadly tuned for potentiation than previously appreciated.Long-term potentiation (LTP) is used as a model for studying synaptic events during learning and memory (Bliss and Collingridge 1993; Morris 2003; Lynch 2004). At most synapses, LTP is triggered by postsynaptic Ca2+ influx through N-methyl-d-aspartic acid (NMDA) glutamate receptors (Collingridge et al. 1983; Harris et al. 1984; Herron et al. 1986) and, under some conditions, through L-type voltage-gated Ca2+ channels (Grover and Teyler 1990, 1994; Morgan and Teyler 1999). LTP was discovered in the dentate gyrus (Bliss and Lomo 1973) following several seconds of 10–100 Hz stimulation of the perforant path. Since then, many LTP studies have used similar long, high-frequency stimulation (HFS) protocols, most typically 100 Hz, 1 sec (Bliss and Collingridge 1993). Although effective, HFS does not resemble physiological patterns of activity (Albensi et al. 2007). Patterned stimulation resembling physiological activity, in particular theta burst stimulation, is also effective for LTP induction (Larson et al. 1986; Staubli and Lynch 1987; Capocchi et al. 1992; Nguyen and Kandel 1997). Theta burst stimulation consists of short bursts (4–5 stimuli at 100 Hz) repeated at 5 Hz, which lies within the hippocampal theta frequency range (4–12 Hz) (Bland 1986; Buzsáki 2002). Primed burst stimulation, another form of patterned stimulation, involves delivery of a priming stimulus followed by a single short burst (Larson and Lynch 1986; Rose and Dunwiddie 1986). The temporal requirements for primed burst LTP are quite precise (Diamond et al. 1988; Greenstein et al. 1988; Larson and Lynch 1989): Intervals less than 140 msec or greater than 200 msec are ineffective.The mechanisms underlying theta frequency-dependent LTP have been studied primarily using the primed burst protocol (Larson and Lynch 1986, 1988, 1989; Pacelli et al. 1989; Davies and Collingridge 1996). Activation of GABAB autoreceptors during the priming stimulus suppresses GABA release during the following burst (Davies et al. 1990; Lambert and Wilson 1994; Olpe et al. 1994), allowing greater postsynaptic depolarization (Larson and Lynch 1986; Pacelli et al. 1989) and more effective NMDA receptor activation (Davies and Collingridge 1996). Consequently, temporal requirements for primed burst potentiation match the time course of GABAB autoreceptor-mediated suppression of GABA release (Davies et al. 1990; Davies and Collingridge 1993; Mott et al. 1993).Besides theta, hippocampal activity is observed at other frequencies, notably sharp waves (0.01–5 Hz) (Buzsáki 1986, 1989; Suzuki and Smith 1987) and low-frequency oscillations (≤1 Hz) (Wolansky et al. 2006; Moroni et al. 2007). These lower frequencies dominate during slow wave sleep (Buzsáki 1986; Suzuki and Smith 1987; Wolansky et al. 2006; Moroni et al. 2007), and contribute to hippocampal memory processing (Buzsáki 1989; Pennartz et al. 2002). While synchronized population activity over frequencies from <1 Hz to 12 Hz is associated with hippocampal memory function, previous LTP studies have focused on theta. We therefore investigated burst stimulation at frequencies from 0.05 Hz to 10 Hz. We found that CA1 synapses potentiate to some degree over this entire range and that maximal potentiation occurs around delta frequency rather than theta.  相似文献   

5.
The basolateral complex (BLA) and central nucleus (CEA) of the amygdala play critical roles in associative learning, including Pavlovian conditioning. However, the precise role for these structures in Pavlovian conditioning is not clear. Recent work in appetitive conditioning paradigms suggests that the amygdala, particularly the BLA, has an important role in representing the value of the unconditioned stimulus (US). It is not known whether the amygdala performs such a function in aversive paradigms, such as Pavlovian fear conditioning in rats. To address this issue, Experiments 1 and 2 used temporary pharmacological inactivation of the amygdala prior to a US inflation procedure to assess its role in revaluing shock USs after either overtraining (Experiment 1) or limited training (Experiment 2), respectively. Inactivation of the BLA or CEA during the inflation session did not affect subsequent increases in conditioned freezing observed to either the tone conditioned stimulus (CS) or the conditioning context in either experiment. In Experiment 3, NBQX infusions into the BLA impaired the acquisition of auditory fear conditioning with an inflation-magnitude US, indicating that the amygdala is required for associative learning with intense USs. Together, these results suggest that the amygdala is not required for revaluing an aversive US despite being required for the acquisition of fear to that US.Pavlovian fear conditioning in rats is a behavioral model used to investigate the neurobiology underlying the development and maintenance of fear learning and memory (Grillon et al. 1996; LeDoux 1998, 2000; Bouton et al. 2001; Maren 2001b, 2005; Kim and Jung 2006). In this model, an innocuous conditioned stimulus (CS), such as a tone, is paired with an aversive unconditioned stimulus (US), such as a footshock. After one or more pairings, the rat learns that the CS predicts the US. As a consequence, CS presentations alone elicit a conditioned fear response (CR), which includes increases in heart rate, arterial blood pressure, hypoalgesia, potentiated acoustic startle, stress hormone release, and freezing (somatomotor immobility).The amygdala has been identified as one of the major regions in which fear memories are encoded and stored. Within the amygdala, the basolateral complex of the amygdala (BLA; consisting of the lateral, basolateral, and basomedial nuclei) and the central nucleus of the amygdala (CEA) receive convergent CS and US information and are involved in the acquisition of fear memories (LeDoux 1998, 2000; Fendt and Fanselow 1999; Davis and Whalen 2001; Maren 2001b; Schafe et al. 2001; Fanselow and Gale 2003; Wilensky et al. 2006; Zimmerman et al. 2007). In addition, the CEA has an important role in the expression of fear CRs (Fendt and Fanselow 1999; LeDoux 2000; Davis and Whalen 2001; Maren 2001b; Fanselow and Gale 2003). In support of this, many studies have shown that either permanent or temporary lesions of the BLA or CEA prevent the acquisition and/or expression of fear memories (Helmstetter 1992; Helmstetter and Bellgowan 1994; Campeau and Davis 1995; Maren et al. 1996a,b; Killcross et al. 1997; Muller et al. 1997; Walker and Davis 1997; Cousens and Otto 1998; Maren 1998, 1999, 2001a,b; Wilensky et al. 1999, 2000, 2006; Goosens and Maren 2001, 2003; Nader et al. 2001; Fanselow and Gale 2003; Gale et al. 2004; Koo et al. 2004; Zimmerman et al. 2007).In addition to its role in encoding CS–US associations during conditioning, recent work suggests that the amygdala is also involved in representing properties of the US itself. For example, temporary or permanent lesions of the BLA reduce both decrements in conditioned responding after devaluation of a food US (Hatfield et al. 1996; Killcross et al. 1997; Blundell et al. 2001; Balleine et al. 2003; Everitt et al. 2003; Pickens et al. 2003; Holland 2004) and increments in conditional responding after inflation of a shock US (Fanselow and Gale 2003). Moreover, recent electrophysiological studies in primates indicate that amygdala neurons represent the value of both aversive and appetitive outcomes (Paton et al. 2006; Belova et al. 2007, 2008; Salzman et al. 2007). These studies suggest that one function of the BLA is to represent specific properties of biologically significant events, such as the food or shock USs that are typically used in Pavlovian conditioning paradigms. By this view, the BLA may represent specific sensory properties of USs that shape the nature of learned behavioral responses to the US (Balleine and Killcross 2006) and allow CSs to gain access to the incentive value of the US (Everitt et al. 2003).In contrast to this view, we recently reported that rats with neurotoxic BLA lesions exhibit normal US revaluation after Pavlovian fear conditioning (Rabinak and Maren 2008). In this study, auditory fear conditioning (75 CS–US trials) with a moderate footshock (1 mA) was followed by several exposures (five US-alone trials) to an intense footshock (3 mA) during an inflation session. Both intact rats and rats with BLA lesions exhibit a robust increase in conditional freezing to the auditory CS during a subsequent retention test (Rabinak and Maren 2008). Control experiments suggested that this was due to a revaluation of the US with which the CS was associated, rather than nonassociative sensitization of fear engendered by exposure to intense shock. These data reveal that the BLA may not be necessary for representing properties of shock USs during Pavlovian fear conditioning. To address these issues further, we have examined the consequence of reversible pharmacological manipulations of the amygdala during US inflation on conditional fear responses established with either extensive or limited training.  相似文献   

6.
Activation of β-adrenergic receptors (β-ARs) enhances hippocampal memory consolidation and long-term potentiation (LTP), a likely mechanism for memory storage. One signaling pathway linked to β-AR activation is the cAMP-PKA pathway. PKA is critical for the consolidation of hippocampal long-term memory and for the expression of some forms of long-lasting hippocampal LTP. How does β-AR activation affect the PKA-dependence, and persistence, of LTP elicited by distinct stimulation frequencies? Here, we use in vitro electrophysiology to show that patterns of stimulation determine the temporal phase of LTP affected by β-AR activation. In addition, only specific patterns of stimulation recruit PKA-dependent LTP following β-AR activation. Impairments of PKA-dependent LTP maintenance generated by pharmacologic or genetic deficiency of PKA activity are also abolished by concurrent activation of β-ARs. Taken together, our data show that, depending on patterns of synaptic stimulation, activation of β-ARs can gate the PKA-dependence and persistence of synaptic plasticity. We suggest that this may allow neuromodulatory receptors to fine-tune neural information processing to meet the demands imposed by numerous synaptic activity profiles. This is a form of “metaplasticity” that could control the efficacy of consolidation of hippocampal long-term memories.The hippocampus importantly contributes to memory function in the mammalian brain (Zola-Morgan et al. 1986; Eichenbaum et al. 1990; Otto and Eichenbaum 1992; Phillips and LeDoux 1992; Remondes and Schuman 2004). It has reciprocal connections with numerous cortical areas, including those responsible for high-level integration of spatial and contextual data from the external environment (Lavenex and Amaral 2000). As such, the hippocampus is well positioned to receive and survey a broad range of information and select behaviorally salient data for long-term storage. Activity-dependent enhancement of hippocampal synaptic strength can store information carried in patterns of afferent neural activity (Bliss and Collingridge 1993; Moser et al. 1998; Nathe and Frank 2003; Whitlock et al. 2006). Substantial evidence suggests that long-term potentiation (LTP) of synaptic strength plays important roles in the formation of long-term memory (LTM) (Doyere and Laroche 1992; Bourtchuladze et al. 1994; Abel and Lattal 2001; Genoux et al. 2002). As such, mechanistic studies of LTP have shed valuable light on how the mammalian brain stores new information.The hippocampus receives dense noradrenergic projections from the locus coeruleus, a brain structure that can influence many vital brain functions, including attention, sleep, arousal, mood regulation, learning, and memory (Berridge and Waterhouse 2003). Both α- and β-adrenergic receptor subtypes are present on hippocampal neurons (Morrison and Foote 1986; Berridge and Waterhouse 2003), and noradrenaline (NA) acts on hippocampal β-adrenergic receptors (β-ARs) to facilitate the retention and recall of memory (Izquierdo et al. 1998; Ji et al. 2003; Murchison et al. 2004). In humans, stimulation of the noradrenergic neuromodulatory system enhances memory for emotional stimuli, and inhibition of β-ARs prevents this memory enhancement (Cahill et al. 1994; van Stegeren et al. 1998; O’Carroll et al. 1999).Consistent with the notion that selective enhancement of LTM may occur following β-AR activation, stimulation of β-ARs can also facilitate the persistence of LTP. In areas CA3 and CA1, β-AR activation facilitates the induction of long-lasting LTP when paired with certain patterns of electrical stimulation (Huang and Kandel 1996; Gelinas and Nguyen 2005). However, the mechanisms by which different patterns of stimulation control synaptic responsiveness to β-AR activation are unclear.β-ARs couple to guanine-nucleotide-binding regulatory Gs proteins to stimulate adenylyl cyclase activity and increase intracellular cAMP (Seeds and Gilman 1971; Maguire et al. 1977). A main target of cAMP signaling is activation of cAMP-dependent protein kinase (PKA), a kinase that is required for some forms of long-lasting LTP and for consolidation of hippocampal LTM (Frey et al. 1993; Abel et al. 1997; Nguyen and Woo 2003). Interestingly, the PKA-dependence of hippocampal LTP displays plasticity: Specific temporal patterns of synaptic stimulation, such as repeated and temporally spaced 100-Hz stimulation, elicit LTP that requires PKA for its expression (Woo et al. 2003). Also, spatial “enrichment” can increase the PKA-dependence of LTP in mice, and this is correlated with improved hippocampal memory function (Duffy et al. 2001). However, it is unclear whether activation of β-ARs can critically gate the PKA-dependence of LTP. In this study, we examine the effects of β-AR activation on LTP generated by various patterns of afferent stimulation in area CA1 of the hippocampus, and we determine the role of PKA in these β-AR-modulated forms of LTP.  相似文献   

7.
Humans with post-traumatic stress disorder (PTSD) are deficient at extinguishing conditioned fear responses. A study of identical twins concluded that this extinction deficit does not predate trauma but develops as a result of trauma. The present study tested whether the Lewis rat model of PTSD reproduces these features of the human syndrome. Lewis rats were subjected to classical auditory fear conditioning before or after exposure to a predatory threat that mimics a type of traumatic stress that leads to PTSD in humans. Exploratory behavior on the elevated plus maze 1 wk after predatory threat exposure was used to distinguish resilient vs. PTSD-like rats. Properties of extinction varied depending on whether fear conditioning and extinction occurred before or after predatory threat. When fear conditioning was carried out after predatory threat, PTSD-like rats showed a marked extinction deficit compared with resilient rats. In contrast, no differences were seen between resilient and PTSD-like rats when fear conditioning and extinction occurred prior to predatory threat. These findings in Lewis rats closely match the results seen in humans with PTSD, thereby suggesting that studies comparing neuronal interactions in resilient vs. at-risk Lewis rats might shed light on the causes and pathophysiology of human PTSD.Following a severe traumatic event, some individuals manifest a syndrome, known as post-traumatic stress disorder (PTSD), characterized by repeated painful recollection of the trauma, avoidance of trauma reminders, intrusive thoughts, startle, hyperarousal, and disturbed sleep. Lifetime prevalence of PTSD ranges from 1.4% to 11.2% in representative samples (Afifi et al. 2010). Review of heritability studies indicate that there is a significant genetic component to PTSD (Nugent et al. 2008) as shared genes explain approximately 25%–38% of variability in PTSD symptom clusters and total symptoms (Afifi et al. 2010). Moreover, PTSD heritability coincides with that of other psychiatric conditions such as generalized anxiety, panic disorder, and depression (Chantarujikapong et al. 2001; Fu et al. 2007), suggesting that these disorders gain expression through common biological pathways.Although our understanding of PTSD has improved recently, we still have a limited grasp of the factors that predispose some to be at risk for PTSD, as well as those contributing to PTSD expression following trauma. In part, this situation results from the ethical limitations associated with human studies. For example, humans cannot be randomly assigned to trauma, and, importantly, the invasive techniques required to study the pathophysiology of PTSD can be used only in animals. Thus, a promising approach toward understanding the underlying pathophysiology of PTSD would be to study the disease in a valid animal model of the human syndrome.Fortunately, much work has already been performed to define an animal model of PTSD that reproduces the salient features of the human syndrome (see Adamec et al. 2006; Cohen et al. 2006a; Siegmund and Wotjak 2006). The most promising research has focused on the impact of exposing rodents to species-relevant threatening stimuli that mimic the kind of life-and-death circumstances that precipitates PTSD in humans. Indeed, rodents exposed to predators or their odor develop long-lasting (3 wk or more) manifestations of anxiety as seen in a variety of behavioral assays including the elevated plus maze (EPM), social interaction test, and acoustic startle (Adamec and Shallow 1993; Blanchard et al. 2003; Adamec et al. 2006). The inherent strength of this species-relevant stimulus was demonstrated in studies where predator odor served as an unconditioned stimulus to support cued or contextual fear conditioning (Blanchard et al. 2001; McGregor et al. 2002). As is the case with human PTSD, differential vulnerability to predatory threat was also observed in rodents. In one study, for instance, the propensity of different strains of rats to develop extreme behavioral manifestations of anxiety (EBMAs) as a result of predatory threat has been characterized, revealing that a much higher proportion (50%) of Lewis rats (an inbred strain) develops EBMAs as a result of an intense predatory threat compared with 10% of Fisher rats and 20% of Sprague–Dawley rats (Cohen et al. 2006b).Although these results are promising, it remains unclear whether Lewis rats also exhibit traits that parallel the pathophysiology of human PTSD. One such factor, thought to play a particularly critical role in the persistence of PTSD, is a compromised ability to extinguish fear memories (for review, see Quirk and Mueller 2008). Two main lines of evidence support this notion. First, in functional imaging studies, the brain structures that normally support fear expression and extinction (for review, see Pape and Pare 2010) show abnormal activity patterns in PTSD (Rauch et al. 2006; Shin et al. 2006; Bremner et al. 2008; Milad et al. 2009). Second, several studies have reported that individuals with PTSD are deficient at extinguishing classically conditioned fear responses (Orr et al. 2000; Peri et al. 2000; Blechert et al. 2007; Milad et al. 2008, 2009). Of particular interest, a study of identical twins discordant for trauma exposure has revealed that this extinction deficit was not a pre-existing condition but developed as a result of trauma (Milad et al. 2008). Given the possibility that an inability to extinguish fear might contribute to the maintenance of PTSD, we therefore tested whether Lewis rats reproduced the properties of extinction seen in human PTSD.  相似文献   

8.
The conditioned stimulus (CS) pathway that is necessary for visual delay eyeblink conditioning was investigated in the current study. Rats were initially given eyeblink conditioning with stimulation of the ventral nucleus of the lateral geniculate (LGNv) as the CS followed by conditioning with light and tone CSs in separate training phases. Muscimol was infused into the medial pontine nuclei (MPN) after each training phase to examine conditioned response (CR) retention to each CS. The spread of muscimol infusions targeting the MPN was examined with fluorescent muscimol. Muscimol infusions into the MPN resulted in a severe impairment in retention of CRs with the LGNv stimulation and light CSs. A less severe impairment was observed with the tone CS. The results suggest that CS information from the LGNv and light CSs is relayed to the cerebellum through the MPN. Retrograde tracing with fluoro-gold (FG) showed that the LGNv and nucleus of the optic tract have ipsilateral projections to the MPN. Unilateral inputs to the MPN from the LGNv and nucleus of the optic tract may be part of the visual CS pathway that is necessary for visual eyeblink conditioning.The neural substrates of associative motor learning have been studied extensively using eyeblink conditioning (Christian and Thompson 2003; Thompson 2005). Eyeblink conditioning is typically established by pairing a tone or light conditioned stimulus (CS) with an unconditioned stimulus (US) that elicits the eyeblink reflex. An eyeblink conditioned response (CR) emerges over the course of paired training, and the peak of eyelid closure occurs at the onset time of the US. Results from experiments using temporary lesions of the cerebellar deep nuclei or cerebellar cortex indicate that the anterior interpositus nucleus and cerebellar cortex are necessary for acquisition, expression, and extinction of eyeblink conditioning (Krupa et al. 1993; Hardiman et al. 1996; Krupa and Thompson 1997; Garcia and Mauk 1998; Medina et al. 2001; Bao et al. 2002; Freeman et al. 2005a). Blocking cerebellar output with inactivation of the superior cerebellar peduncle, red nucleus, or brainstem motor nuclei selectively blocks CR expression but not acquisition, providing further evidence that learning occurs in the cerebellum (Chapman et al. 1990; Krupa et al. 1993, 1996; Krupa and Thompson 1995).Sensory stimuli from every modality are sent to the pontine nuclei (PN), which receive projections from the lower brainstem, thalamus, and cerebral cortex (Glickstein et al. 1980; Brodal 1981; Mihailoff et al. 1989; Schmahmann and Pandya 1989; Wells et al. 1989; Knowlton et al. 1993; Campolattaro et al. 2007). Neurons in the PN project CS information to the cerebellum via mossy fibers in the middle cerebellar peduncle that synapse on granule cells in the cerebellar cortex and on neurons in the interpositus nucleus (Bloedel and Courville 1981; Brodal 1981; Steinmetz and Sengelaub 1992; Mihailoff 1993). Lesions of the middle cerebellar peduncle impair eyeblink conditioning with auditory, somatosensory, and visual CSs (Lewis et al. 1987). Bilateral electrolytic lesions of the dorsolateral and lateral pontine nuclei (LPN) block retention of CRs to an auditory CS but have no effect on light-elicited CRs (Steinmetz et al. 1987). Inactivation of the contralateral LPN blocks CRs to a tone CS but not to lateral reticular nucleus stimulation in rabbits (Bao et al. 2000). Moreover, stimulation of the LPN or middle cerebellar peduncle is a sufficient CS for eyeblink conditioning (Steinmetz et al. 1986, 1987; Tracy et al. 1998; Bao et al. 2000; Freeman and Rabinak 2004; Freeman et al. 2005b; Campolattaro and Freeman 2008). The findings from the lesion, inactivation, and stimulation studies provide evidence that the PN is the proximal part of the CS pathway for cerebellar learning. These studies also indicate that the LPN is the primary source of auditory CS input to the cerebellum.Only a few studies have examined the visual CS pathway necessary for eyeblink conditioning. The dorsal and ventral divisions of the lateral geniculate nucleus of the thalamus (LGNd, LGNv), pretectal nuclei, visual cortex (VCTX), and superior colliculus (SC) comprise a hypothesized parallel visual CS pathway for eyeblink conditioning (Koutalidis et al. 1988). Combined lesions of all of these visual areas completely block acquisition, lesions of two visual areas produce a partial impairment, and lesions in one visual area do not impair CR acquisition (Koutalidis et al. 1988). Stimulation of the VCTX, SC, and LGNv support eyeblink conditioning, and each of these structures has a direct unilateral projection to the PN that could be important for eyeblink conditioning (Halverson et al. 2009). The lesion and stimulation studies provide evidence that structures in the hypothesized visual CS pathway are independently capable of supporting conditioning. An important aspect of the visual CS pathway proposed in the Koutalidis et al. (1988) study is distributed projections of each visual area to different regions of the PN. The important projections were hypothesized to be from the VCTX to the rostral portion of the PN, from both the SC and pretectal nuclei to the dorsolateral PN, and the LGNv projection to the medial pontine nuclei (MPN) (Koutalidis et al. 1988). Lesions of the VCTX were substituted for LGN lesions in the Koutalidis et al. (1988) study due to technical problems with animal survival. The LGNv projection to the MPN was therefore not examined in their combined lesion group. Stimulation of the anterior pretectal nucleus is not a sufficient CS to support eyeblink conditioning (Campolattaro et al. 2007). The direct PN projection from the VCTX is not necessary for CR retention to a light CS, as lesions do not prevent eyeblink conditioning to a light CS in dogs or monkeys (Hilgard and Marquis 1935, 1936). Moreover, lesions of the entire cerebral cortex do not prevent acquisition or retention of delay eyeblink conditioning to a tone or light CS in rabbits (Oakley and Russell 1972, 1977). The LGNv and SC, therefore, are likely sources of visual input to the PN that is necessary for eyeblink conditioning.The current experiment investigated whether information from the LGNv and a visual CS (light) share similar inputs into the MPN and whether those inputs are different from an auditory CS. The visual projections to the MPN were also investigated with the retrograde tracer fluoro-gold (FG) to identify structures that may be involved with the relay of CS information during eyeblink conditioning. In the conditioning experiment, rats received three phases of training, with each phase consisting of three acquisition sessions followed by a muscimol infusion into the MPN, and then a saline recovery session. Each rat received unilateral stimulation of the LGNv (contralateral to the trained eye) during phase 1 of training followed by either a tone or light CS in phases 2 and 3 (order of stimulus presentation was counterbalanced). One group received LGNv stimulation in phase 1 followed by a light CS in phase 2, and a tone CS in phase 3 (SLT). The other group received the tone CS in phase 2, and light CS in phase 3 (STL).  相似文献   

9.
A distributed limbic-corticostriatal circuitry is implicated in cue-induced drug craving and relapse. Exposure to drug-paired cues not only precipitates relapse, but also triggers the reactivation and reconsolidation of the cue-drug memory. However, the limbic cortical-striatal circuitry underlying drug memory reconsolidation is unclear. The aim of this study was to investigate the involvement of the nucleus accumbens core and the basolateral amygdala in the reconsolidation of a cocaine-conditioned stimulus-evoked memory. Antisense oligodeoxynucleotides (ASO) were infused into each structure to knock down the expression of the immediate-early gene zif268, which is known to be required for memory reconsolidation. Control infusions used missense oligodeoxynucleotides (MSO). The effects of zif268 knockdown were measured in two complementary paradigms widely used to assess the impact of drug-paired CSs upon drug seeking: the acquisition of a new instrumental response with conditioned reinforcement and conditioned place preference. The results show that both intranucleus accumbens core and intrabasolateral amygdala zif268 ASO infusions at memory reactivation impaired the reconsolidation of the memory underlying a cocaine-conditioned place preference. However, knockdown of zif268 in the nucleus accumbens at memory reactivation had no effect on the memory underlying the conditioned reinforcing properties of the cocaine-paired CS measured subsequently, and this is in contrast to the marked impairment observed previously following intrabasolateral amygdala zif268 ASO infusions. These results suggest that both the basolateral amygdala and nucleus accumbens core are key structures within limbic cortical-striatal circuitry where reconsolidation of a cue-drug memory occurs. However reconsolidation of memory representations formed during Pavlovian conditioning are differentially localized in each site.Through Pavlovian association with the effects of addictive drugs, a conditioned stimulus (CS) acquires both general motivational and sensory-specific conditioned reinforcing properties (Everitt et al. 2000). These associations contribute to the high likelihood of relapse in addicted individuals, yet the extinction of drug CSs by nonreinforced exposure has proved to be of limited therapeutic utility (Conklin and Tiffany 2002). In abstinent humans, drug CSs evoke salient and persistent memories of drug-taking experiences, inducing craving and relapse (Childress et al. 1988; O''Brien et al. 1992), while in animals they also precipitate relapse to, or reinstatement of, drug-seeking behavior (de Wit and Stewart 1981; Meil and See 1996; Fuchs et al. 1998; Weiss 2000). Thus, disrupting drug-related memories might significantly diminish relapse propensity on subsequent exposure to drug-paired CSs, and thereby promote abstinence.Exposure to a drug-associated CS also triggers a process of memory reconsolidation, which restabilizes the reactivated and labile memory (Nader 2003). While reconsolidation may adaptively update memories (Dudai 2006; Hupbach et al. 2007; Rossato et al. 2007; Lee 2009), its disruption may reduce the impact of intrusive or aberrant memories on behavior subsequently (Lee et al. 2005, 2006; Brunet et al. 2008; Kindt et al. 2009; Taubenfeld et al. 2009). The reconsolidation of CS–cocaine memories has been shown to depend upon protein synthesis and expression of the plasticity-associated immediate-early gene, zif268, in the basolateral amygdala (BLA), since zif268 knockdown at memory reactivation disrupted the acquired conditioned reinforcing properties of the CS measured in drug-seeking tasks days or weeks later (Lee et al. 2005, 2006).Although the BLA has an established role in CS-drug memory reconsolidation, it remains unclear whether other sites within limbic cortical-ventral striatal circuitry participate in this process. The nucleus accumbens core (AcbC) is a primary candidate, as zif268 is up-regulated in the AcbC as well as in the BLA following exposure to cocaine CSs (Thomas et al. 2003). Furthermore, the AcbC, which is strongly implicated in Pavlovian influences on drug seeking and relapse (Cardinal et al. 2002; Kalivas and McFarland 2003), has been shown to be a site where the reconsolidation of a drug conditioned place preference (CPP) memory can be disrupted (Miller and Marshall 2005).Given the evidence of increased zif268 expression in the AcbC following CS-drug memory reactivation, we investigated its requirement in the reconsolidation of cocaine-associated memories. To address this issue, we employed two different but complementary paradigms widely used to measure the conditioned effects of CSs associated with drugs of abuse: the acquisition of a new instrumental response with conditioned reinforcement (ANR) and CPP. These procedures have been used successfully to investigate the mechanisms underlying the reconsolidation of appetitive Pavlovian memories, but it is likely that they depend upon different associative mechanisms (Everitt et al. 1991; White and McDonald 1993) that in turn depend upon different neural loci within limbic cortical-striatal circuitry (Cardinal et al. 2002). Therefore, to enable a full comparison with the functional involvement of the BLA, we investigated the necessity for BLA zif268 expression in drug memory reconsolidation as assessed in the CPP paradigm.  相似文献   

10.
The contribution of the medial prefrontal cortex (mPFC) to the formation of memory is a subject of considerable recent interest. Notably, the mechanisms supporting memory acquisition in this structure are poorly understood. The mPFC has been implicated in the acquisition of trace fear conditioning, a task that requires the association of a conditional stimulus (CS) and an aversive unconditional stimulus (UCS) across a temporal gap. In both rat and human subjects, frontal regions show increased activity during the trace interval separating the CS and UCS. We investigated the contribution of prefrontal neural activity in the rat to the acquisition of trace fear conditioning using microinfusions of the γ-aminobutyric acid type A (GABAA) receptor agonist muscimol. We also investigated the role of prefrontal N-methyl-d-aspartate (NMDA) receptor-mediated signaling in trace fear conditioning using the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV). Temporary inactivation of prefrontal activity with muscimol or blockade of NMDA receptor-dependent transmission in mPFC impaired the acquisition of trace, but not delay, conditional fear responses. Simultaneously acquired contextual fear responses were also impaired in drug-treated rats exposed to trace or delay, but not unpaired, training protocols. Our results support the idea that synaptic plasticity within the mPFC is critical for the long-term storage of memory in trace fear conditioning.The prefrontal cortex participates in a wide range of complex cognitive functions including working memory, attention, and behavioral inhibition (Fuster 2001). In recent years, the known functions of the prefrontal cortex have been extended to include a role in long-term memory encoding and retrieval (Blumenfeld and Ranganath 2006; Jung et al. 2008). The prefrontal cortex may be involved in the acquisition, expression, extinction, and systems consolidation of memory (Frankland et al. 2004; Santini et al. 2004; Takehara-Nishiuchi et al. 2005; Corcoran and Quirk 2007; Jung et al. 2008). Of these processes, the mechanisms supporting the acquisition of memory may be the least understood. Recently, the medial prefrontal cortex (mPFC) has been shown to be important for trace fear conditioning (Runyan et al. 2004; Gilmartin and McEchron 2005), which provides a powerful model system for studying the neurobiological basis of prefrontal contributions to memory. Trace fear conditioning is a variant of standard “delay” fear conditioning in which a neutral conditional stimulus (CS) is paired with an aversive unconditional stimulus (UCS). Trace conditioning differs from delay conditioning by the addition of a stimulus-free “trace” interval of several seconds separating the CS and UCS. Learning the CS–UCS association across this interval requires forebrain structures such as the hippocampus and mPFC. Importantly, the mPFC and hippocampus are only necessary for learning when a trace interval separates the stimuli (Solomon et al. 1986; Kronforst-Collins and Disterhoft 1998; McEchron et al. 1998; Takehara-Nishiuchi et al. 2005). This forebrain dependence has led to the hypothesis that neural activity in these structures is necessary to bridge the CS–UCS temporal gap. In support of this hypothesis, single neurons recorded from the prelimbic area of the rat mPFC exhibit sustained increases in firing during the CS and trace interval in trace fear conditioning (Baeg et al. 2001; Gilmartin and McEchron 2005). Similar sustained responses are not observed following the CS in delay conditioned animals or unpaired control animals. This pattern of activity is consistent with a working memory or “bridging” role for mPFC in trace fear conditioning, but it is not clear whether this activity is actually necessary for learning. We address this issue here using the γ-aminobutyric acid type A (GABAA) receptor agonist muscimol to temporarily inactivate cellular activity in the prelimbic mPFC during the acquisition of trace fear conditioning.The contribution of mPFC to the long-term storage (i.e., 24 h or more) of trace fear conditioning, as opposed to a strictly working memory role (i.e., seconds to minutes), is a matter of some debate. Recent reports suggest that intact prefrontal activity at the time of testing is required for the recall of trace fear conditioning 2 d after training (Blum et al. 2006a), while mPFC lesions performed 1 d after training fail to disrupt the memory (Quinn et al. 2008). The findings from the former study may reflect a role for prelimbic mPFC in the expression of conditional fear rather than memory storage per se (Corcoran and Quirk 2007). However, blockade of the intracellular mitogen-activated protein kinase (MAPK) cascade during training impairs the subsequent retention of trace fear conditioning 48 h later (Runyan et al. 2004). Activation of the MAPK signaling cascade can result in the synthesis of proteins necessary for synaptic strengthening, providing a potential mechanism by which mPFC may participate in memory storage. To better understand the nature of the prefrontal contribution to long-term memory, more information is needed about fundamental plasticity mechanisms in this structure. Dependence on N-methyl-d-aspartate receptors (NMDAR) is a key feature of many forms of long-term memory, both in vitro and in vivo. The induction of long-term potentiation (LTP) in the hippocampus, a cellular model of long-term plasticity and information storage, requires NMDAR activation (Reymann et al. 1989). Genetic knockdown or pharmacological blockade of NMDAR-mediated neurotransmission in the hippocampus impairs several forms of hippocampus-dependent memory, including trace fear conditioning (Tonegawa et al. 1996; Huerta et al. 2000; Quinn et al. 2005), but it is unknown if activation of these receptors is necessary in the mPFC for the acquisition of trace fear conditioning. Data from in vivo electrophysiology studies have shown that stimulation of ventral hippocampal inputs to prelimbic neurons in mPFC produces LTP, and the induction of prefrontal LTP depends upon functional NMDARs (Laroche et al. 1990; Jay et al. 1995). If the role of mPFC in trace fear conditioning goes beyond simply maintaining CS information in working memory, then activation of NMDAR may be critical to memory formation. We test this hypothesis by reversibly blocking NMDAR neurotransmission with 2-amino-5-phosphonovaleric acid (APV) during training to examine the role of prefrontal NMDAR to the acquisition of trace fear conditioning.Another important question is whether mPFC contributes to the formation of contextual fear memories. Fear to the training context is acquired simultaneously with fear to the auditory CS in both trace and delay fear conditioning. Conflicting reports in the literature suggest the role of mPFC in contextual fear conditioning is unclear. Damage to ventral areas of mPFC prior to delay fear conditioning has failed to impair context fear acquisition (Morgan et al. 1993). Prefrontal lesions incorporating dorsal mPFC have in some cases been reported to augment fear responses to the context (Morgan and LeDoux 1995), while blockade of NMDAR transmission has impaired contextual fear conditioning (Zhao et al. 2005). Post-training lesions of mPFC impair context fear retention (Quinn et al. 2008) in trace and delay conditioning. Contextual fear responses were assessed in this study to determine the contribution of neuronal activity and NMDAR-mediated signaling in mPFC to the acquisition of contextual fear conditioning.  相似文献   

11.
12.
Activation of the N-methyl-d-aspartate receptor (NMDAR) glycine site has been shown to accelerate adaptive forms of learning that may benefit psychopathologies involving cognitive and perseverative disturbances. In this study, the effects of increasing the brain levels of the endogenous NMDAR glycine site agonist D-serine, through the genetic inactivation of its catabolic enzyme D-amino acid oxidase (DAO), were examined in behavioral tests of learning and memory. In the Morris water maze task (MWM), mice carrying the hypofunctional Dao1G181R mutation demonstrated normal acquisition of a single platform location but had substantially improved memory for a new target location in the subsequent reversal phase. Furthermore, Dao1G181R mutant animals exhibited an increased rate of extinction in the MWM that was similarly observed following pharmacological administration of D-serine (600 mg/kg) in wild-type C57BL/6J mice. In contextual and cued fear conditioning, no alterations were found in initial associative memory recall; however, extinction of the contextual fear memory was facilitated in mutant animals. Thus, an augmented level of D-serine resulting from reduced DAO activity promotes adaptive learning in response to changing conditions. The NMDAR glycine site and DAO may be promising therapeutic targets to improve cognitive flexibility and inhibitory learning in psychiatric disorders such as schizophrenia and anxiety syndromes.The N-methyl-d-aspartate receptor (NMDAR) has an important role in excitatory neurotransmission and contributes to numerous brain processes, including synaptic plasticity, learning, and memory formation (Nicoll 2003). Activation of NMDARs requires membrane depolarization in addition to concurrent binding of glutamate to NMDAR2 (NR2) and glycine to the NMDAR1 (NR1) subunit (Johnson and Ascher 1987; Clements and Westbrook 1991). D-serine has also been shown to be an endogenous co-agonist for the NR1 glycine site, acting with high selectivity and a potency similar to or greater than that of glycine (Matsui et al. 1995). In the brain, the localization of D-serine closely resembles that of NMDARs (Schell et al. 1997), and D-serine has been reported to be the predominant physiologic co-agonist for the maintenance of NMDAR-mediated currents in the hippocampus, retina, and hypothalamus (Mothet et al. 2000; Yang et al. 2003). Moreover, in vivo studies have demonstrated that the NMDAR glycine site is not saturated at the synapses of several brain regions (Fuchs et al. 2005). Consequently, increasing D-serine levels may modulate neurotransmission and behavioral responses reliant on NMDAR activity.The NMDAR glycine site has been implicated in the pathophysiology and treatment of a number of psychiatric conditions (Coyle and Tsai 2004; Millan 2005). Blockade of the NMDAR with noncompetitive antagonists like phencyclidine results in the production and exacerbation of schizophrenic-like symptoms in humans and animals (Javitt and Zukin 1991; Krystal et al. 1994). Genetic studies have associated genes that mediate D-serine synthesis and degradation with a vulnerability to schizophrenia, and levels of D-serine are decreased in the CSF and serum of schizophrenic patients (Chumakov et al. 2002; Hashimoto et al. 2003, 2005; Schumacher et al. 2004; Morita et al. 2007). These observations prompted clinical trials with direct and indirect activators of the NMDAR glycine site, including D-serine, and improvements were revealed when these compounds were added to conventional antipsychotic regimes, particularly with the negative and cognitive symptoms of schizophrenia (Tsai et al. 1998; Coyle and Tsai 2004; Heresco-Levy et al. 2005). Furthermore, altered NMDAR activation has also been shown to affect extinction, a learning process that may be of benefit in anxiety illnesses, such as post-traumatic stress syndrome and obsessive-compulsive disorder (Davis et al. 2006). In rodents, extinction was shown to be impaired following inhibition of NMDARs in contextual fear conditioning, inhibitory avoidance, and eyeblink conditioning tasks (Kehoe et al. 1996; Lee and Kim 1998; Szapiro et al. 2003). In contrast, the partial NMDAR agonist D-cycloserine facilitated the extinction of fear memories in rodents and individuals with phobias and other anxiety disorders (Ressler et al. 2004; Ledgerwood et al. 2005; Norberg et al. 2008). Thus, the NMDAR glycine site and its related modulatory proteins may be important targets for the amelioration of psychopathologies involving cognitive dysfunction and maladaptive behaviors.Endogenous levels of D-serine in the brain are regulated by its catabolic enzyme, D-amino acid oxidase (DAO); by the D-serine synthesis enzyme, serine racemase (Srr); and by neuronal and glial transporters (Foltyn et al. 2005; Martineau et al. 2006). Agents targeting such proteins may prove to be an effective method of increasing cerebral D-serine and occupancy of the NMDAR glycine site, which could overcome the difficulties D-serine and similar compounds have with penetrating the blood-brain barrier (Coyle and Tsai 2004; Bauer et al. 2005). Inhibiting DAO function in the brain is of particular interest as it would circumvent any nephrotoxicity associated with high levels of systemic D-serine (Maekawa et al. 2005a). DAO is a peroxisomal flavoprotein that at physiological pH is highly selective for D-serine, and in the brain, DAO is located predominantly in astrocytes (Mothet et al. 2000). An inverse correlation between the brain distribution of DAO and D-serine evinces the efficacy of this enzyme, with the most abundant DAO expression located in the D-serine-sparse hindbrain and cerebellum (Schell et al. 1995; Moreno et al. 1999). To study the effects of limiting DAO function, we tested a line of mice carrying a single point mutation (G181R) that results in a complete lack of DAO activity and consequently augmented D-serine in serum and brain (Sasaki et al. 1992; Hashimoto et al. 1993). These mice have previously been shown to exhibit an in vitro increase in NMDAR-mediated excitatory postsynaptic currents in dorsal horn neurons of the spinal cord and an in vivo elevation of cGMP that is indicative of augmented NMDAR activity (Wake et al. 2001; Almond et al. 2006). This demonstrates that reduced DAO function is capable of augmenting NMDAR activation, and it may follow that cognitive and extinction processes influenced by NMDARs are enhanced in Dao1G181R mutant mice. To investigate this possibility, we assessed the effects of the Dao1G181R mutation on learning, memory, and extinction in Morris water maze (MWM) and in contextual and cued fear conditioning paradigms.  相似文献   

13.
The nucleus accumbens (NAc) plays a role in hedonic reactivity to taste stimuli. Learning can alter the hedonic valence of a given stimulus, and it remains unclear how the NAc encodes this shift. The present study examined whether the population response of NAc neurons to a taste stimulus is plastic using a conditioned taste aversion (CTA) paradigm. Electrophysiological and electromyographic (EMG) responses to intraoral infusions of a sucrose (0.3 M) solution were made in naïve rats (Day 1). Immediately following the session, half of the rats (n = 6; Paired) received an injection of lithium chloride (0.15 M; i.p.) to induce malaise and establish a CTA while the other half (n = 6; Unpaired) received a saline injection. Days later (Day 5), NAc recordings during infusions of sucrose were again made. Electrophysiological and EMG responses to sucrose did not differ between groups on Day 1. For both groups, the majority of sucrose responsive neurons exhibited a decrease in firing rate (77% and 71% for Paired and Unpaired, respectively). Following conditioning, in Paired rats, EMG responses were indicative of aversion. Moreover, the majority of responsive NAc neurons now exhibited an increase in firing rate (69%). Responses in Unpaired rats were unchanged by the experience. Thus, the NAc differentially encodes the hedonic value of the same stimulus based on learned associations.Our search for sustenance and pleasurable stimuli is often balanced by our desire to avoid punishment and harm. Similarly, neural systems responsible for generating approach behavior must be countered by signals that suppress approach behavior under contexts where approach is dangerous or maladaptive (Hoebel et al. 2007). The nucleus accumbens (NAc) is acutely involved in food intake and goal-directed, approach behavior. Pharmacological manipulations of the NAc promote food intake even in sated rats (Maldonado-Irizarry and Kelley 1995; Stratford and Kelley 1997). Lesions or inactivation of the NAc impair conditioned approach behavior (Cardinal et al. 2002; Blaiss and Janak 2009). Interestingly, drugs that lead to inhibition of select regions of the NAc increase positive hedonic responses to palatable taste solutions (Pecina and Berridge 2005). Recordings from individual NAc neurons have mirrored these findings. We and others have shown that consumption of palatable food stimuli is associated with decreases in the firing rate of the majority of responsive NAc neurons (Nicola et al. 2004b; Roitman et al. 2005; Taha and Fields 2005; Wheeler et al. 2008). In addition, decreases in NAc neural activity are associated with bouts of licking behavior for palatable stimuli (Taha and Fields 2006), and disruption of these decreases halt feeding bouts (Krause et al. 2010). Finally, decreases in NAc neural activity are associated with preferred locations previously paired with drug reward (German and Fields 2007). Thus, decreases in NAc activity appear to be closely linked to positive hedonic stimuli, stimuli that have been explicitly paired with them and behavioral approach.The NAc is also responsive to aversive stimuli (Carlezon and Thomas 2009; Levita et al. 2009). The delivery of aversive taste stimuli to rats is associated with increases in the firing rate of the majority of responsive NAc neurons (Roitman et al. 2005; Wheeler et al. 2008). In addition to responding to primary appetitive and aversive taste stimuli, NAc neurons develop responses to predictors of reward and aversion. Individual NAc neurons selectively encode cues that predict either appetitive (Roitman et al. 2005; Day et al. 2006) or aversive (Roitman et al. 2005) stimuli following purely Pavlovian conditioning or a combination of instrumental and Pavlovian conditioning (Setlow et al. 2003; Nicola et al. 2004a). NAc neurons come to encode departure from locations not associated with reward with the majority response being that of excitation (German and Fields 2007). Thus, NAc neurons appear to encode aversive stimuli and withdrawal behavior with increases in activity. These and other findings have led to the recent postulation that reward and aversion are differentially encoded by the activity of NAc neurons (Carlezon and Thomas 2009).Data supportive of the activity hypothesis (Carlezon and Thomas 2009) have been generated by the use of different stimuli to serve as appetitive or aversive primary or predictive stimuli. Thus, selective encoding could be biased by the sensory properties of each stimulus rather than their hedonic valence. When a novel, palatable taste is paired with visceral malaise, a Pavlovian association is made and a conditioned taste aversion (CTA) is established. Subsequent exposure to the once palatable stimulus is met with avoidance or aversion and rejection (Garcia et al. 1974; Schafe et al. 1995). Thus, the same taste stimulus can either be appetitive or aversive, depending on Pavlovian associations. Here, individual NAc neurons were recorded in rats (Paired) before (Day 1) and after a CTA (Day 5) was established and compared with rats that received equal exposure to the same stimuli but in an unpaired manner (Unpaired), and hence no CTA developed. Simultaneously, oro-motor behavior was characterized to provide an index of the associative strength of the taste stimulus. Using this paradigm, we determined that the population response of the NAc does indeed encode hedonic valence.  相似文献   

14.
After extinction of conditioned fear, memory for the conditioning and extinction experiences becomes context dependent. Fear is suppressed in the extinction context, but renews in other contexts. This study characterizes the neural circuitry underlying the context-dependent retrieval of extinguished fear memories using c-Fos immunohistochemistry. After fear conditioning and extinction to an auditory conditioned stimulus (CS), rats were presented with the extinguished CS in either the extinction context or a second context, and then sacrificed. Presentation of the CS in the extinction context yielded low levels of conditioned freezing and induced c-Fos expression in the infralimbic division of the medial prefrontal cortex, the intercalated nuclei of the amygdala, and the dentate gyrus (DG). In contrast, presentation of the CS outside of the extinction context yielded high levels of conditioned freezing and induced c-Fos expression in the prelimbic division of the medial prefrontal cortex, the lateral and basolateral nuclei of the amygdala, and the medial division of the central nucleus of the amygdala. Hippocampal areas CA1 and CA3 exhibited c-Fos expression when the CS was presented in either context. These data suggest that the context specificity of extinction is mediated by prefrontal modulation of amygdala activity, and that the hippocampus has a fundamental role in contextual memory retrieval.Considerable interest has emerged in recent years in the neural mechanisms underlying the associative extinction of learned fear (Maren and Quirk 2004; Myers et al. 2006; Quirk and Mueller 2008). Notably, extinction is a useful model for important aspects of exposure-based therapies for the treatment of human anxiety disorders such as panic disorder and post-traumatic stress disorder (PTSD) (Bouton et al. 2001, 2006). During extinction, a conditioned stimulus (CS) is repeatedly presented in the absence of the unconditioned stimulus (US), a procedure that greatly reduces the magnitude and probability of the conditioned response (CR). After the extinction of fear, there is substantial evidence that extinction does not erase the original fear memory, but results in a transient inhibition of fear. For example, extinguished fear responses return after the mere passage of time (i.e., spontaneous recovery) or after a change in context (i.e., renewal) (Bouton et al. 2006; Ji and Maren 2007). In other words, extinguished fear is context specific. The return of fear after extinction is a considerable challenge for maintaining long-lasting fear suppression after exposure-based therapies (Rodriguez et al. 1999; Hermans et al. 2006; Effting and Kindt 2007; Quirk and Mueller 2008).In the last several years, considerable progress has been made in understanding the neural mechanisms underlying the context specificity of fear extinction. For example, lesions or inactivation of the hippocampus prevent the renewal of fear when an extinguished CS is presented outside of the extinction context (Corcoran and Maren 2001, 2004; Corcoran et al. 2005; Ji and Maren 2005, 2008; Hobin et al. 2006). In addition, neurons in the basolateral complex of the amygdala exhibit context-specific spike firing to extinguished CSs (Hobin et al. 2003; Herry et al. 2008), and this requires hippocampal input (Maren and Hobin 2007). Indeed, amygdala neurons that fire more to extinguished CSs outside of the extinction context are monosynaptically excited by hippocampal stimulation (Herry et al. 2008). In contrast, neurons that responded preferentially to extinguished CSs in the extinction context receive synaptic input from the medial prefrontal cortex (Herry et al. 2008).The prevalent theory of the interactions between the prefrontal cortex, hippocampus, and amygdala that lead to regulation of fear by context assumes that when animals experience an extinguished CS in the extinction context, the hippocampus drives prefrontal cortex inhibition of the amygdala to suppress fear (Hobin et al. 2003; Maren and Quirk 2004; Maren 2005). When animals encounter an extinguished CS outside of the extinction context, the hippocampus is posited to inhibit the prefrontal cortex and thereby promote amygdala activity required to renew fear. The hippocampus may also drive fear renewal through its direct projections to the basolateral amygdala (Herry et al. 2008). Although this model accounts for much of the extant literature on the context specificity of extinction, it is not known whether the nodes of this hypothesized neural network are coactive during the retrieval of fear and extinction memories. As a first step in addressing this issue, we used ex vivo c-Fos immunohistochemistry (e.g., Knapska et al. 2007) to generate a functional map of the neural circuits involved in the contextual retrieval of fear memory after extinction. Our results reveal reciprocal activity in prefrontal-amygdala circuits involved in extinction and renewal and implicate the hippocampus in hierarchical control of contextual memory retrieval within these circuits.  相似文献   

15.
Using a two-way signaled active avoidance (2-AA) learning procedure, where rats were trained in a shuttle box to avoid a footshock signaled by an auditory stimulus, we tested the contributions of the lateral (LA), basal (B), and central (CE) nuclei of the amygdala to the expression of instrumental active avoidance conditioned responses (CRs). Discrete or combined lesions of the LA and B, performed after the rats had reached an asymptotic level of avoidance performance, produced deficits in the CR, whereas CE lesions had minimal effect. Fiber-sparing excitotoxic lesions of the LA/B produced by infusions of N-methyl-d-aspartate (NMDA) also impaired avoidance performance, confirming that neurons in the LA/B are involved in mediating avoidance CRs. In a final series of experiments, bilateral electrolytic lesions of the CE were performed on a subgroup of animals that failed to acquire the avoidance CR after 3 d of training. CE lesions led to an immediate rescue of avoidance learning, suggesting that activity in CE was inhibiting the instrumental CR. Taken together, these results indicate that the LA and B are essential for the performance of a 2-AA response. The CE is not required, and may in fact constrain the instrumental avoidance response by mediating the generation of competing Pavlovian responses, such as freezing.Early studies of the neural basis of fear often employed avoidance conditioning procedures where fear was assessed by measuring instrumental responses that reduced exposure to aversive stimuli (e.g., Weiskrantz 1956; Goddard 1964; Sarter and Markowitsch 1985; Gabriel and Sparenborg 1986). Despite much research, studies of avoidance failed to yield a coherent view of the brain mechanisms of fear. In some studies, a region such as the amygdala would be found to be essential and in other studies would not. In contrast, rapid progress in understanding the neural basis of fear and fear learning was made when researchers turned to the use of Pavlovian fear conditioning (Kapp et al. 1984, 1992; LeDoux et al. 1984; Davis 1992; LeDoux 1992; Cain and Ledoux 2008a). It is now well established from such studies that specific nuclei and subnuclei of the amygdala are essential for the acquisition and storage of Pavlovian associative memories about threatening situations (LeDoux 2000; Fanselow and Gale 2003; Maren 2003; Maren and Quirk 2004; Schafe et al. 2005; Davis 2006).Several factors probably contributed to the fact that Pavlovian conditioning succeeded where avoidance conditioning struggled. First, avoidance conditioning has long been viewed as a two-stage learning process (Mowrer and Lamoreaux 1946; Miller 1948b; McAllister and McAllister 1971; Levis 1989; Cain and LeDoux 2008b). In avoidance learning, the subject initially undergoes Pavlovian conditioning and forms an association between the shock and cues in the apparatus. The shock is an unconditioned stimulus (US) and the cues are conditioned stimuli (CS). Subsequently, the subject learns the instrumental response to avoid the shock. Further, the “fear” aroused by the presence of the CS motivates learning of the instrumental response. Fear reduction associated with successful avoidance has even been proposed to be the event that reinforces avoidance learning (e.g., Miller 1948b; McAllister and McAllister 1971; Cain and LeDoux 2007). Given that Pavlovian conditioning is the initial stage of avoidance conditioning, as well as the source of the “fear” in this paradigm, it would be more constructive to study the brain mechanisms of fear through studies of Pavlovian conditioning rather than through paradigms where Pavlovian and instrumental conditioning are intermixed. Second, avoidance conditioning was studied in a variety of ways, but it was not as well appreciated at the time as it is today; that subtle differences in the way tasks are structured can have dramatic effects on the brain mechanisms required to perform the task. There was also less of an appreciation for the detailed organization of circuits in areas such as the amygdala. Thus, some avoidance studies examined the effects of removal of the entire amygdala or multiple subdivisions (for review, see Sarter and Markowitsch 1985). Finally, fear conditioning studies typically involved a discrete CS, usually a tone, which could be tracked from sensory processing areas of the auditory system to specific amygdala nuclei that process the CS, form the CS–US association, and control the expression of defense responses mediated by specific motor outputs. In contrast, studies of avoidance conditioning often involved diffuse cues, and the instrumental responses used to indirectly measure fear were complex and not easily mapped onto neural circuits.Despite the lack of progress in understanding the neural basis of avoidance responses, this behavioral paradigm has clinical relevance. For example, avoidance behaviors provide an effective means of dealing with fear in anticipation of a harmful event. When information is successfully used to avoid harm, not only is the harmful event prevented, but also the fear arousal, anxiety, and stress associated with such events; (Solomon and Wynne 1954; Kamin et al. 1963). Because avoidance is such a successful strategy to cope with danger, it is used extensively by patients with fear-related disorders to reduce their exposure to fear- or anxiety-provoking situations. Pathological avoidance is, in fact, a hallmark of anxiety disorders: In avoiding fear and anxiety, patients often fail to perform normal daily activities (Mineka and Zinbarg 2006).We are revisiting the circuits of avoidance conditioning from the perspective of having detailed knowledge of the circuit of the first stage of avoidance, Pavlovian conditioning. To most effectively take advantage of Pavlovian conditioning findings, we have designed an avoidance task that uses a tone and a shock. Rats were trained to shuttle back and forth in a runway in order to avoid shock under the direction of a tone. That is, the subjects could avoid a shock if they performed a shuttle response when the tone was on, but received a shock if they stayed in the same place (two-way signaled active avoidance, 2-AA). While the amygdala has been implicated in 2-AA (for review, see Sarter and Markowitsch 1985), the exact amygdala nuclei and their interrelation in a circuit are poorly understood.We focused on the role of amygdala areas that have been studied extensively in fear conditioning: the lateral (LA), basal (B), and central (CE) nuclei. The LA is widely thought to be the locus of plasticity and storage of the CS–US association, and is an essential part of the fear conditioning circuitry. The basal amygdala, which receives inputs from the LA (Pitkänen 2000), is not normally required for the acquisition and expression of fear conditioning (Amorapanth et al. 2000; Nader et al. 2001), although it may contribute under some circumstances (Goosens and Maren 2001; Anglada-Figueroa and Quirk 2005). The B is also required for the use of the CS in the motivation and reinforcement of responses in other aversive instrumental tasks (Killcross et al. 1997; Amorapanth et al. 2000). The CE, through connections to hypothalamic and brainstem areas (Pitkänen 2000), is required for the expression of Pavlovian fear responses (Kapp et al. 1979, 1992; LeDoux et al. 1988; Hitchcock and Davis 1991) but not for the motivation or reinforcement of aversive instrumental responses (Amorapanth et al. 2000; LeDoux et al. 2009). We thus hypothesized that damage to the LA or B, but not to the CE, would interfere with the performance of signaled active avoidance.  相似文献   

16.
Segmentation of target odorants from background odorants is a fundamental computational requirement for the olfactory system and is thought to be behaviorally mediated by olfactory habituation memory. Data from our laboratory have shown that odor-specific adaptation in piriform neurons, mediated at least partially by synaptic adaptation between the olfactory bulb outputs and piriform cortex pyramidal cells, is highly odor specific, while that observed at the synaptic level is specific only to certain odor features. Behavioral data show that odor habituation memory at short time constants corresponding to synaptic adaptation is also highly odor specific and is blocked by the same pharmacological agents as synaptic adaptation. Using previously developed computational models of the olfactory system we show here how synaptic adaptation and potentiation interact to create the observed specificity of response adaptation. The model analyzes the mechanisms underlying the odor specificity of habituation, the dependence on functioning cholinergic modulation, and makes predictions about connectivity to and within the piriform neural network. Predictions made by the model for the role of cholinergic modulation are supported by behavioral results.Filtering sensory input is critical for information processing tasks such as background segmentation, and shifting processing power away from redundant, stable, or repetitive stimuli toward dynamic, novel stimuli. A critical aspect of this filtering however, is stimulus specificity. Under most circumstances it may be most beneficial to selectively filter the redundant stimulus, while maintaining responsiveness to different, though perhaps highly similar stimuli.In the olfactory system, short-term habituation to stable or repeated odorants involves a metabotropic glutamate receptor (mGluR)-dependent depression of afferent synapses to the piriform cortex (Best and Wilson 2004). Blockade of group III mGluR receptors prevents cortical adaptation odors (Best and Wilson 2004), and reduces short-term habituation of odor-evoked reflexes (Best et al. 2005) and odor investigation (Yadon and Wilson 2005; Bell et al. 2008; McNamara et al. 2008). This short-term habituation is highly odor specific, with minimal cross-adaptation of piriform cortical single-unit responses or cross-habituation of behavioral responses to similar odors, including between mixtures and their components (Wilson 2000; Cleland et al. 2002). Interestingly, there is an experience-dependent component to short-term habituation odor specificity. The odor specificity is most pronounced for familiar odors, with very brief (<20 sec) exposure to odors producing more generalization, and longer exposures (>50 sec) sufficient to permit strong odor specificity in cortex adaptation (Wilson 2003).The homosynaptic nature of afferent synaptic depression underlying cortical adaptation (Wilson 1998; Best and Wilson 2004) may contribute to this odor specificity. However, the experience dependence suggests that there may be an additional process involved. In fact, theoretical views of piriform cortical function suggest that the cortex learns previous patterns of input via potentiation of intracortical association fiber synapses (Hasselmo et al. 1990; Barkai et al. 1994; Haberly 2001; Linster et al. 2003). This autoassociative process essentially creates a template of previous network activity, against which new input patterns can be compared, allowing enhanced discrimination between similar patterns, as well as completion of degraded patterns (Barkai et al. 1994; Barnes et al. 2008). In support of this hypothesis, previous work has demonstrated that disruption of normal synaptic potentiation in association fiber synapses through blockade of cholinergic muscarinic receptors (Patil et al. 1998; Linster et al. 2003), reduces odor specificity of cortical adaptation (Wilson 2001b), prevents the effects of odor experience on subsequent behavioral cross-habituation (Fletcher and Wilson 2002), and disrupts odor discrimination (Linster et al. 2001).The present series of studies further explored the role of combined afferent synaptic depression and intracortical association fiber synaptic potentiation on the specificity of cortical adaptation and odor habituation. Using a computational model of the olfactory system (Linster et al. 2007), the results suggest that activity-dependent association fiber plasticity is necessary to account for the specificity of odor habituation. Furthermore, in behavioral experiments blockade of cholinergic muscarinic receptors during habituation enhances generalization of odor habituation, consistent with the modeling and with previous electrophysiological results.  相似文献   

17.
18.
Research on the role of the hippocampus in object recognition memory has produced conflicting results. Previous studies have used permanent hippocampal lesions to assess the requirement for the hippocampus in the object recognition task. However, permanent hippocampal lesions may impact performance through effects on processes besides memory consolidation including acquisition, retrieval, and performance. To overcome this limitation, we used an intrahippocampal injection of the GABA agonist muscimol to reversibly inactivate the hippocampus immediately after training mice in two versions of an object recognition task. We found that the inactivation of the dorsal hippocampus after training impairs object-place recognition memory but enhances novel object recognition (NOR) memory. However, inactivation of the dorsal hippocampus after repeated exposure to the training context did not affect object recognition memory. Our findings suggest that object recognition memory formation does not require the hippocampus and, moreover, that activity in the hippocampus can interfere with the consolidation of object recognition memory when object information encoding occurs in an unfamiliar environment.The medial temporal lobe plays an important role in recognition memory formation, as damage to this brain structure in humans, monkeys, and rodents impairs performance in recognition memory tasks (for review, see Squire et al. 2007). Within the medial temporal lobe, studies have consistently demonstrated that the perirhinal cortex is involved in this form of memory (Brown and Aggleton 2001; Winters and Bussey 2005; Winters et al. 2007, 2008; Balderas et al. 2008). In contrast, the role of the hippocampus in object recognition memory remains a source of debate. Some studies have reported novel object recognition (NOR) impairments in animals with hippocampal lesions (Clark et al. 2000; Broadbent et al. 2004, 2010), yet others have reported no impairments (Winters et al. 2004; Good et al. 2007). Differences in hippocampal lesion size and behavioral procedures among the different studies have been implicated as the source of discrepancy in these findings (Ainge et al. 2006), but previous studies have not examined the consequences of environment familiarity on the hippocampus dependence of object recognition memory.Previous studies addressing the role of the hippocampus in recognition memory relied on permanent, pre-training lesions (Clark et al. 2000; Broadbent et al. 2004; Winters et al. 2004; Good et al. 2007). Permanent lesions inactivate the hippocampus not only during the consolidation phase, but also during habituation, acquisition, and memory retrieval, potentially confounding interpretation of the results. Furthermore, permanent lesion studies require long surgery recovery times during which extrahippocampal changes may emerge to mask or compensate for the loss of hippocampal function. To overcome these problems, we reversibly inactivated the dorsal hippocampus after training mice in two versions of the object recognition task. We infused muscimol, a γ-aminobutyric acid (GABA) receptor type A agonist, into the dorsal hippocampus immediately after training in an object-place recognition task or immediately following training in a NOR task. Consistent with previous studies (Save et al. 1992; Galani et al. 1998; Mumby et al. 2002; Stupien et al. 2003; Aggleton and Brown 2005), we observed that hippocampal inactivation impairs object-place recognition memory. Interestingly, we observed that the degree of contextual familiarity can influence NOR memory formation. We found that when shorter periods of habituation to the experimental environment were used, hippocampal inactivation enhances long-term NOR memory. In contrast, after extended periods of contextual habituation, long-term recognition memory was unaltered by hippocampal inactivation. Together these results suggest that if familiarization with objects occurs at a stage in which the contextual environment is relatively novel, the hippocampus plays an inhibitory role on the consolidation of object recognition memory. Supporting this view, we observed that object recognition memory is unaffected by hippocampal inactivation when initial exploration of the objects occurred in a familiar environment.  相似文献   

19.
Eyelid conditioning has proven useful for analysis of learning and computation in the cerebellum. Two variants, delay and trace conditioning, differ only by the relative timing of the training stimuli. Despite the subtlety of this difference, trace eyelid conditioning is prevented by lesions of the cerebellum, hippocampus, or medial prefrontal cortex (mPFC), whereas delay eyelid conditioning is prevented by cerebellar lesions and is largely unaffected by forebrain lesions. Here we test whether these lesion results can be explained by two assertions: (1) Cerebellar learning requires temporal overlap between the mossy fiber inputs activated by the tone conditioned stimulus (CS) and the climbing fiber inputs activated by the reinforcing unconditioned stimulus (US), and therefore (2) trace conditioning requires activity that outlasts the presentation of the CS in a subset of mossy fibers separate from those activated directly by the CS. By use of electrical stimulation of mossy fibers as a CS, we show that cerebellar learning during trace eyelid conditioning requires an input that persists during the stimulus-free trace interval. By use of reversible inactivation experiments, we provide evidence that this input arises from the mPFC and arrives at the cerebellum via a previously unidentified site in the pontine nuclei. In light of previous PFC recordings in various species, we suggest that trace eyelid conditioning involves an interaction between the persistent activity of delay cells in mPFC-a putative mechanism of working memory-and motor learning in the cerebellum.Eyelid conditioning is a form of associative learning that has proven useful for mechanistic studies of learning (Thompson 1986). All variants of eyelid conditioning involve pairing a conditioned stimulus (CS, typically a tone) with a reinforcing unconditioned stimulus (US, mild electrical stimulation near the eye) to promote learned eyelid closure in response to the CS (also known as a conditioned response). Delay eyelid conditioning, where the CS and US overlap in time (Fig. 1A , left), is largely unaffected by forebrain lesions (Solomon et al. 1986; Mauk and Thompson 1987; Kronforst-Collins and Disterhoft 1998; Weible et al. 2000; Powell et al. 2001; McLaughlin et al. 2002) and engages the cerebellum relatively directly (but see Halverson and Freeman 2006). Presentation of the tone and the US are conveyed to the cerebellum via activation of mossy fibers and climbing fibers, respectively (Fig. 1B; Mauk et al. 1986; Steinmetz et al. 1987, 1989; Sears and Steinmetz 1991; Hesslow 1994; Hesslow et al. 1999). In addition, output via a cerebellar deep nucleus is required for the expression of conditioned responses (McCormick and Thompson 1984). This relatively direct mapping of stimuli onto inputs and of output onto behavior makes delay eyelid conditioning a powerful tool for the analysis of cerebellar learning and computation (Mauk and Donegan 1997; Medina and Mauk 2000; Medina et al. 2000, 2002; Hansel et al. 2001; Ohyama et al. 2003).Open in a separate windowFigure 1.The procedures, neural pathways, and putative signals involved in delay and trace eyelid conditioning. (A) Stimulus timing for delay (left) and trace (right) training trials. For delay conditioning, the US overlaps in time with the tone CS. In this and subsequent figures, green is used to indicate the presentation of the CS for delay conditioning. For trace conditioning, the US is presented after CS offset, and “trace interval” refers to the period between CS offset and US onset. For convenience, we used red and maroon regions to represent the CS and trace interval, respectively. Sample conditioned eyelid responses are shown below, for which an upward deflection indicates closure of the eyelid. (B) Schematic representation of the pathways engaged by delay conditioning. The CS and US, respectively, engage mossy fibers and climbing fibers relatively directly, and forebrain input is not required for normal learning. (C) The signals hypothesized to engage the cerebellum during trace conditioning. The activity of mossy fibers directly activated by the tone CS does not significantly outlast the stimulus. Thus, a forebrain structure is thought to provide an input that overlaps in time with the US and is necessary to produce cerebellar learning.Trace eyelid conditioning, where the US is presented after tone offset (Fig. 1A, right), has attracted interest for its potential to reveal the nature of interactions between the forebrain and cerebellum as well as the learning mechanisms within these systems. This potential stems from the sensitivity of trace conditioning not only to lesions of cerebellum but also to lesions of hippocampus, medial prefrontal cortex (mPFC), or mediodorsal thalamic nucleus (Woodruff-Pak et al. 1985; Moyer Jr. et al. 1990; Kronforst-Collins and Disterhoft 1998; Weible et al. 2000; Powell et al. 2001; McLaughlin et al. 2002; Powell and Churchwell 2002; Simon et al. 2005). Given the general inability of forebrain lesions to affect delay conditioning, these results have promoted the general interpretation that the forebrain and cerebellum interact to mediate trace conditioning (Weiss and Disterhoft 1996; Clark and Squire 1998; Clark et al. 2002).Here we test the specific hypotheses that (Fig. 1C) (1) cerebellar learning requires that mossy fiber and climbing fiber inputs overlap in time (or nearly so) and (2) that cerebellar learning in trace conditioning occurs in response to a forebrain-driven mossy fiber input that outlasts the CS to overlap with the US rather than the inputs activated by the tone CS (Clark et al. 2002). The data provide direct support for both assertions and, together with recent anatomical studies (Buchanan et al. 1994; Weible et al. 2007), reveal a pathway between the mPFC and cerebellum that is necessary for the expression of trace eyelid responses. When combined with previous recordings from PFC in primates and rodents (Funahashi et al. 1989; Bodner et al. 1996; Fuster et al. 2000; Narayanan and Laubach 2006), these data support the hypothesis that trace eyelid conditioning is mediated by interactions between working memory-related persistent activity in mPFC and motor learning mechanisms in the cerebellum.  相似文献   

20.
In appetitive Pavlovian learning, animals learn to associate discrete cues or environmental contexts with rewarding outcomes, and these cues and/or contexts can potentiate an ongoing instrumental response for reward. Although anatomical substrates underlying cued and contextual learning have been proposed, it remains unknown whether specific molecular signaling pathways within the striatum underlie one form of learning or the other. Here, we show that while the striatum-enriched isoform of adenylyl cyclase (AC5) is required for cued appetitive Pavlovian learning, it is not required for contextual appetitive learning. Mice lacking AC5 (AC5KO) could not learn an appetitive Pavlovian learning task in which a discrete signal light predicted reward delivery, yet they could form associations between context and either natural or drug reward, which could in turn elicit Pavlovian approach behavior. However, unlike wild-type (WT) mice, AC5KO mice could not use these Pavlovian conditioned stimuli to potentiate ongoing instrumental behavior in a Pavlovian-to-instrumental transfer paradigm. These data suggest that AC5 is specifically required for learning associations between discrete cues and outcomes in which the temporal relationship between conditioned stimulus (CS) and unconditioned stimulus (US) is essential, while alternative signaling mechanisms may underlie the formation of associations between context and reward. In addition, loss of AC5 compromises the ability of both contextual and discrete cues to modulate instrumental behavior.In Pavlovian learning, animals form associations between discrete or contextual stimuli in their environment to shape their behavior and make appropriate responses. In discrete cue appetitive Pavlovian conditioning, a single cue with a defined onset and offset that typically activates one sensory modality is provided, immediately followed by reward delivery (Hall 2002; Domjan 2006; Ito et al. 2006). Alternatively, behavior can be driven by context, an assortment of stimuli activating a number of sensory modalities that contribute to the representation of environmental space (Balsam 1985; Rudy and Sutherland 1995; Smith and Mizumori 2006). Collectively, these stimuli make up a context that is paired with reward delivery in contextual appetitive learning. One important distinction between these two forms of learning is that in cued conditioning, there is a discrete temporal relationship between conditioned stimulus (CS) and unconditioned stimulus (US). Thus, an animal can effectively anticipate timing of reward delivery from onset and offset of CS. In vivo studies of dopamine (DA) neuron activity have suggested this discrete temporal relationship can be encoded by DA neurons (Schultz et al. 1997; Schultz 1998a). In contrast, in many contextual Pavlovian conditioning tasks, US delivery is not predicted, it is delivered as the animal explores the environment; thus, the temporal relationship between contextual stimuli and reinforcement is not an essential component of the learned associations (Fanselow 2000). These two types of environmental stimuli may be encoded differently and mediated by different neural substrates.Lesion studies have elucidated the anatomical dissociations between cued and contextual appetitive learning. Using a modified Y-maze procedure, it has been suggested that contextual appetitive learning is hippocampus- and nucleus-accumbens (NAc) dependent, while cued learning is dependent on the basolateral nucleus of the amygdala (BLA) and the NAc (Ito et al. 2005, 2006). In addition, as the NAc processes glutamatergic inputs from the amygdala and the hippocampus (Groenewegen et al. 1999; Goto and Grace 2008), recent studies have indicated that disconnecting the hippocampus from the NAc shell can disrupt contextual appetitive conditioning (Ito et al. 2008). In addition to glutamatergic inputs, the NAc, as part of the ventral striatum, receives dense dopaminergic input from midbrain nuclei (Groenewegen et al. 1999). Temporal shifts in phasic DA release in striatal regions has been correlated with appetitive Pavlovian learning (Day et al. 2007), and models of striatal function suggest that DA-dependent modification of glutamatergic transmission in the striatum may underlie reinforcement learning (Reynolds et al. 2001; Reynolds and Wickens 2002).The cAMP pathway has been implicated in plasticity and learning in a number of neuronal structures (Abel et al. 1997; Ferguson and Storm 2004; Pittenger et al. 2006). Adenylyl cyclase (AC), the enzyme that makes cAMP, has nine membrane-bound isoforms, each with different expression patterns and regulatory properties (Hanoune and Defer 2001). AC5 is highly enriched in the striatum, with very low levels of expression in other regions of the brain (Mons et al. 1998; Iwamoto et al. 2003; Kheirbek et al. 2008, 2009), and genetic deletion of AC5 (AC5KO) severely compromises DA''s ability to modulate cAMP levels in the striatum (Iwamoto et al. 2003). Previous studies have shown that AC5KO mice were severely impaired in acquisition of a cued appetitive Pavlovian learning task, while formation of action–outcome contingencies in instrumental learning was intact (Kheirbek et al. 2008). Yet, it remains unknown whether the cAMP pathway in the striatum underlies all forms of appetitive Pavlovian learning, or how it contributes to the ability of Pavlovian cues to modulate instrumental behavior.In this study, we asked if genetic deletion of AC5 selectively impairs cued or contextual appetitive learning. In addition, we tested whether loss of AC5 affects the ability of conditioned cues or contexts to modulate instrumental behavior. Our data indicate that although loss of AC5 abolishes cued appetitive learning, contextual learning is spared. Although contextual stimuli could elicit approach behavior in AC5KO mice, they could not potentiate an ongoing instrumental response, highlighting the importance of this isoform of AC in Pavlovian–instrumental interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号