首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In studies on auditory speech perception, participants are often asked to perform active tasks, e.g. decide whether the perceived sound is a speech sound or not. However, information about the stimulus, inherent in such tasks, may induce expectations that cause altered activations not only in the auditory cortex, but also in frontal areas such as inferior frontal gyrus (IFG) and motor cortices, even in the absence of an explicit task. To investigate this, we applied spectral mixes of a flute sound and either vowels or specific music instrument sounds (e.g. trumpet) in an fMRI study, in combination with three different instructions. The instructions either revealed no information about stimulus features, or explicit information about either the music instrument or the vowel features. The results demonstrated that, besides an involvement of posterior temporal areas, stimulus expectancy modulated in particular a network comprising IFG and premotor cortices during this passive listening task.  相似文献   

2.
Interpersonal trust and distrust are important components of human social interaction. Although several studies have shown that brain function is associated with either trusting or distrusting others, very little is known regarding brain function during the control of social attitudes, including trust and distrust. This study was designed to investigate the neural mechanisms involved when people attempt to control their attitudes of trust or distrust toward another person. We used a novel control-of-attitudes fMRI task, which involved explicit instructions to control attitudes of interpersonal trust and distrust. Control of trust or distrust was operationally defined as changes in trustworthiness evaluations of neutral faces before and after the control-of-attitudes fMRI task. Overall, participants (n = 60) evaluated faces paired with the distrust instruction as being less trustworthy than faces paired with the trust instruction following the control-of-distrust task. Within the brain, both the control-of-trust and control-of-distrust conditions were associated with increased temporoparietal junction, precuneus (PrC), inferior frontal gyrus (IFG), and medial prefrontal cortex activity. Individual differences in the control of trust were associated with PrC activity, and individual differences in the control of distrust were associated with IFG activity. Together, these findings identify a brain network involved in the explicit control of distrust and trust and indicate that the PrC and IFG may serve to consolidate interpersonal social attitudes.  相似文献   

3.
Using fMRI to study recovery from acquired dysphasia   总被引:7,自引:0,他引:7  
We have used functional magnetic resonance imaging (fMRI) to characterize brain activations associated with two distinct language tasks performed by a 28-year-old woman after partial recovery from dysphasia due to a left frontal hemispheric ischemic stroke. MRI showed that her ischemic lesion extended posteriorly from the left inferior frontal to the perisylvian cortex. fMRI scans of both language tasks revealed substantial differences in activation pattern relative to controls. The nature of this difference was task-specific. During performance of a verbal semantic decision task, the patient, in contrast to controls, activated a network of brain areas that excluded the inferior frontal gyrus (in either hemisphere). A second task involving rhyme judgment was designed to place a heavier cognitive load on language production processes and activated the left inferior frontal gyrus (Broca's area) strongly in normal controls. During this task, the most prominent frontal activation in the patient occurred in the right homologue of Broca's area. Subsequent analysis of this data by methods able to deal with responses of changing amplitude revealed additional, less sustained recruitment by the patient of cortex adjacent to the infarct in the region inferior to Broca's area during rhyming. These results suggest that in addition to changes in cognitive strategy, recovery from dysphasia could be mediated by both the preservation of neuronal networks in and around the infarct and the use of homologous regions in the contralateral hemisphere.  相似文献   

4.
Brain activation associated with anhedonic depression and co-occurring anxious arousal and anxious apprehension was measured by fMRI during performance of an emotion word Stroop task. Consistent with EEG findings, depression was associated with rightward frontal lateralization in the dorsolateral prefrontal cortex (DLPFC), but only when anxious arousal was elevated and anxious apprehension was low. Activity in the right inferior frontal gyrus (IFG) was also reduced for depression under the same conditions. In contrast, depression was associated with more activity in the anterior cingulate cortex (dorsal ACC and rostral ACC) and the bilateral amygdala. Results imply that depression, particularly when accompanied by anxious arousal, may result in a failure to implement top-down processing by appropriate brain regions (left DLPFC, right IFG) due to increased activation in regions associated with responding to emotionally salient information (right DLPFC, amygdala).  相似文献   

5.
The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech motor and auditory brain activity in children who stutter closer to the age at which recovery from stuttering is documented. Rapid sequences may be preferred for individuals or populations who do not tolerate long scanning sessions. In this report, we document the application of a picture naming and phoneme monitoring task in 3 min fMRI sequences with adults who stutter (AWS). If relevant brain differences are found in AWS with these approaches that conform to previous reports, then these approaches can be extended to younger populations. Pairwise contrasts of brain BOLD activity between AWS and normally fluent adults indicated the AWS showed higher BOLD activity in the right inferior frontal gyrus (IFG), right temporal lobe and sensorimotor cortices during picture naming and higher activity in the right IFG during phoneme monitoring. The right lateralized pattern of BOLD activity together with higher activity in sensorimotor cortices is consistent with previous reports, which indicates rapid fMRI sequences can be considered for investigating stuttering in younger participants.Educational objectives: The reader will learn about and be able to describe the: (1) use of functional MRI to study persistent developmental stuttering; (2) differences in brain activation between persons who stutter and normally fluent speakers; and (3) potential benefit of time efficient fMRI sequences combined with a range of speech processing tasks for investigating stuttering in younger populations.  相似文献   

6.
Abnormalities in brain activation using functional magnetic resonance imaging (fMRI) during cognitive and emotional tasks have been identified in bipolar disorder patients, in frontal, subcortical and limbic regions. Several studies also indicate that mood state may be differentiated by lateralization of brain activation in fronto-limbic regions. The interpretation of fMRI studies in bipolar disorder is limited by the choice of regions of interest, medication effects, comorbidity, and task performance. These studies suggest that there is a complex alteration in regions important for neural networks underlying cognition and emotional processing in bipolar disorder. However, measuring changes in specific brain regions does not identify how these neural networks are affected. New analytical techniques of fMRI data are needed in order to resolve some of these issues and identify how changes in neural networks relate to cognitive and emotional processing in bipolar disorder.  相似文献   

7.
A fMRI study of word retrieval in aphasia   总被引:9,自引:0,他引:9  
The neural mechanisms underlying recovery of cognitive functions are incompletely understood. Aim of this study was to assess, using functional magnetic resonance (fMRI), the pattern of brain activity during covert word retrieval to letter and semantic cues in five aphasic patients after stroke, in order to assess the modifications of brain function which may be related to recovery. Four out of five patients had undergone language recovery, according to standard testing, after at least 6 months of rehabilitation. The cerebral activation of each patient was evaluated and compared with the activation pattern of normal controls studied with the same fMRI paradigm. In the patients, the pattern of brain activation was influenced by the site and extent of the lesion, by the degree of recovery of language, as reflected by task performance outside the scanner, and by task requirements. In the case of word retrieval to letter cues, a good performance was directly related to the activation in Broca's area, or in the right-sided homologue. On the other hand, in the case of semantic fluency, the relationship between performance level and activation was less clear-cut, because of extensive recruitment of frontal areas in patients with defective performance. These findings suggest that the performance in letter fluency is dependent on the integrity of the left inferior frontal cortex, with the participation of the homologous right hemispheric region when the left inferior frontal cortex is entirely of partially damaged. Semantic fluency, which engages the distributed network of semantic memory, is also associated with more extensive patterns of cerebral activation, which however appear to reflect retrieval effort rather than retrieval success.  相似文献   

8.
Sentence comprehension is a complex task that involves both language-specific processing components and general cognitive resources. Comprehension can be made more difficult by increasing the syntactic complexity or the presentation rate of a sentence, but it is unclear whether the same neural mechanism underlies both of these effects. In the current study, we used event-related functional magnetic resonance imaging (fMRI) to monitor neural activity while participants heard sentences containing a subject-relative or object-relative center-embedded clause presented at three different speech rates. Syntactically complex object-relative sentences activated left inferior frontal cortex across presentation rates, whereas sentences presented at a rapid rate recruited frontal brain regions such as anterior cingulate and premotor cortex, regardless of syntactic complexity. These results suggest that dissociable components of a large-scale neural network support the processing of syntactic complexity and speech presented at a rapid rate during auditory sentence processing.  相似文献   

9.
Previous studies examining explicit semantic processing have consistently shown activation of the left inferior frontal gyrus (IFG). In contrast, implicit semantic processing tasks have shown activation in posterior areas including the superior temporal gyrus (STG) and the middle temporal gyrus (MTG) with less consistent activation in the IFG. These results raise the question whether the functional role of the IFG is related to those processes needed to make a semantic decision or to processes involved in the extraction and analysis of meaning. This study examined neural activation patterns during a semantic judgment task requiring overt semantic analysis, and then compared these activation patterns to previously obtained results using the same semantically related and unrelated word pairs in a lexical decision task which required only implicit semantic processing (Rissman, J., Eliassen, J. C., & Blumstein, S. E. (2003). An event-related fMRI investigation of implicit semantic priming. Journal of Cognitive Neuroscience, 15, 1160-1175). The behavioral results demonstrated that the tasks were equivalent in difficulty. fMRI results indicated that the IFG and STG bilaterally showed greater activation for semantically unrelated than related word pairs across the two tasks. Comparison of the two task types across conditions revealed greater activation for the semantic judgment task only in the STG bilaterally and not in the IFG. These results suggest that the pre-frontal cortex is recruited similarly in the service of both the lexical decision and semantic judgment tasks. The increased activation in the STG in the semantic judgment task reflects the greater depth of semantic processing required in this task and indicates that the STG is not simply a passive store of lexical-semantic information but is involved in the active retrieval of this information.  相似文献   

10.
Functional magnetic resonance imaging was used to investigate the neural correlates of passive listening, habitual speech and two modified speech patterns (simulated stuttering and prolonged speech) in stuttering and nonstuttering adults. Within-group comparisons revealed increased right hemisphere biased activation of speech-related regions during the simulated stuttered and prolonged speech tasks, relative to the habitual speech task, in the stuttering group. No significant activation differences were observed within the nonstuttering participants during these speech conditions. Between-group comparisons revealed less left superior temporal gyrus activation in stutterers during habitual speech and increased right inferior frontal gyrus activation during simulated stuttering relative to nonstutterers. Stutterers were also found to have increased activation in the left middle and superior temporal gyri and right insula, primary motor cortex and supplementary motor cortex during the passive listening condition relative to nonstutterers. The results provide further evidence for the presence of functional deficiencies underlying auditory processing, motor planning and execution in people who stutter, with these differences being affected by speech manner.  相似文献   

11.
A 41-year-old male patient is presented with a lesion in the anterior cingulate cortex, medial orbital cortex, and rostral striatum bilaterally and supplementary motor area on the left side. The patient first exhibited a state of akinetic mutism which lasted about 6 weeks. During this state, no volitional vocal utterances were made; there were, however, occasional groans of pain. During recovery, the mute phase was replaced by a state in which the patient could whisper but not phonate verbal utterances. About 10 weeks after the accident, phonation was restored. The speech was characterized, however, by monotonous intonation and a very low frequency of spontaneous utterances. While the frequency of spontaneous speech improved noticeably during the following months, emotional intonation remained permanently defective. A comparison of the present case with other cases from the literature as well as experimental monkey data suggest that the anterior cingulate cortex is involved in the volitional control of emotional vocal utterances.  相似文献   

12.
Emotion regulation can be achieved in various ways, but few studies have evaluated the extent to which the neurocognitive substrates of these distinct operations overlap. In the study reported here, functional magnetic resonance imaging (fMRI) was used to measure activity in the amygdala and prefrontal cortex of 10 participants who completed two independent tasks of emotion regulation-reappraisal, measuring intentional emotion regulation, and affect labeling, measuring incidental emotion regulation-with the objective of identifying potential overlap in the neural substrates underlying each task. Analyses focused on a priori regions of interest in the amygdala and inferior frontal gyrus (IFG). For both tasks, fMRI showed decreased amygdala activation during emotion regulation compared with emotion conditions. During reappraisal, this decrease in amygdala activation was accompanied by a proportional decrease in emotional intensity ratings; during affect labeling, the decrease in amygdala activation correlated with self-reported aggression. Importantly, across participants, the magnitude of decrease in amygdala activation during reappraisal correlated with the magnitude of decrease during affect labeling, even though the tasks were administered on separate days, and values indexing amygdala activation during each task were extracted independently of one another. In addition, IFG-amygdala connectivity, assessed via psychophysiological interaction analysis, overlapped between tasks in two regions within the right IFG. The results suggest that the two tasks recruit overlapping regions of prefrontal cortex, resulting in similar reductions in amygdala activation, regardless of the strategy employed. Intentional and incidental forms of emotion regulation, despite their phenomenological differences, may therefore converge on a common neurocognitive pathway.  相似文献   

13.
Two chronic, nonfluent aphasia patients participated in overt naming fMRI scans, pre- and post-a series of repetitive transcranial magnetic stimulation (rTMS) treatments as part of a TMS study to improve naming. Each patient received 10, 1-Hz rTMS treatments to suppress a part of R pars triangularis. P1 was a ‘good responder’ with improved naming and phrase length; P2 was a ‘poor responder’ without improved naming.Pre-TMS (10 years poststroke), P1 had significant activation in R and L sensorimotor cortex, R IFG, and in both L and R SMA during overt naming fMRI (28% pictures named). At 3 mo. post-TMS (42% named), P1 showed continued activation in R and L sensorimotor cortex, R IFG, and in R and L SMA. At 16 mo. post-TMS (58% named), he also showed significant activation in R and L sensorimotor cortex mouth and R IFG. He now showed a significant increase in activation in the L SMA compared to pre-TMS and at 3 mo. post-TMS (p < .02; p < .05, respectively). At 16 mo. there was also greater activation in L than R SMA (p < .08). At 46 mo. post-TMS (42% named), this new LH pattern of activation continued. He improved on the Boston Naming Test from 11 pictures named pre-TMS, to scores ranging from 14 to 18 pictures, post-TMS (2–43 mo. post-TMS). His longest phrase length (Cookie Theft picture) improved from three words pre-TMS, to 5–6 words post-TMS.Pre-TMS (1.5 years poststroke), P2 had significant activation in R IFG (3% pictures named). At 3 and 6 mo. post-TMS, there was no longer significant activation in R IFG, but significant activation was present in R sensorimotor cortex. On all three fMRI scans, P2 had significant activation in both the L and R SMA. There was no new, lasting perilesional LH activation across sessions for this patient. Over time, there was little or no change in his activation. His naming remained only at 1–2 pictures during all three fMRI scans. His BNT score and longest phrase length remained at one word, post-TMS.Lesion site may play a role in each patient’s fMRI activation pattern and response to TMS treatment. P2, the poor responder, had an atypical frontal lesion in the L motor and premotor cortex that extended high, near brain vertex, with deep white matter lesion near L SMA. P2 also had frontal lesion in the posterior middle frontal gyrus, an area important for naming (Duffau et al., 2003); P1 did not. Additionally, P2 had lesion inferior and posterior to Wernicke’s area, in parts of BA 21 and 37, whereas P1 did not.The fMRI data of our patient who had good response following TMS support the notion that restoration of the LH language network is linked in part, to better recovery of naming and phrase length in nonfluent aphasia.  相似文献   

14.
This study used fMRI to investigate the neural basis of the tongue-twister effect in a sentence comprehension task. Participants silently read sentences equated for the syntactic structure and the lexical frequency of the constituent words, but differing in the proportion of words that shared similar initial phonemes. The manipulation affected not only the reading times and comprehension performance, but also the amount of activation seen in a number of language-related cortical areas. The effect was not restricted to cortical areas known to be involved in articulatory speech programming or rehearsal processes (the inferior frontal gyrus and anterior insula), but also extended to areas associated with other aspects of language processing (inferior parietal cortex) associated with phonological processing and storage.  相似文献   

15.
This study investigated neural activation patterns during verb processing in children, using fMRI (functional Magnetic Resonance Imaging). Preschool children (aged 4–6) passively listened to lists of verbs and adjectives while neural activation was measured. Findings indicated that verbs were processed differently than adjectives, as the verbs recruited motor systems in the frontal cortex during auditory perception, but the adjectives did not. Further evidence suggested that different types of verbs activated different regions in the motor cortex. The results demonstrate that the motor system is recruited during verb perception in the developing brain, reflecting the embodied nature of language learning and processing.  相似文献   

16.
We examined the role of motor affordances of objects for working memory retention processes. Three experiments are reported in which participants passively viewed pictures of real world objects or had to retain the objects in working memory for a comparison with an S2 stimulus. Brain activation was recorded by means of functional magnetic resonance imaging (fMRI). Retaining information about objects for which hand actions could easily be retrieved (manipulable objects) in working memory activated the hand region of the ventral premotor cortex (PMC) contralateral to the dominant hand. Conversely, nonmanipulable objects activated the left inferior frontal gyrus. This suggests that working memory for objects with motor affordance is based on motor programs associated with their use. An additional study revealed that motor program activation can be modulated by task demands: Holding manipulable objects in working memory for an upcoming motor comparison task was associated with left ventral PMC activation. However, retaining the same objects for a subsequent size comparison task led to activation in posterior brain regions. This suggests that the activation of hand motor programs are under top down control. By this they can flexibly be adapted to various task demands. It is argued that hand motor programs may serve a similar working memory function as speech motor programs for verbalizable working memory contents, and that the premotor system mediates the temporal integration of motor representations with other task-relevant representations in support of goal oriented behavior.  相似文献   

17.
Eighteen healthy young adults underwent event-related (ER) functional magnetic resonance imaging (fMRI) of the brain while performing a visual category learning task. The specific category learning task required subjects to extract the rules that guide classification of quasi-random patterns of dots into categories. Following each classification choice, visual feedback was presented. The average hemodynamic response was calculated across the eighteen subjects to identify the separate networks associated with both classification and feedback. Random-effects analyses identified the different networks implicated during the classification and feedback phases of each trial. The regions included prefrontal cortex, frontal eye fields, supplementary motor and eye fields, thalamus, caudate, superior and inferior parietal lobules, and areas within visual cortex. The differences between classification and feedback were identified as (i) overall higher volumes and signal intensities during classification as compared to feedback, (ii) involvement of the thalamus and superior parietal regions during the classification phase of each trial, and (iii) differential involvement of the caudate head during feedback. The effects of learning were then evaluated for both classification and feedback. Early in learning, subjects showed increased activation in the hippocampal regions during classification and activation in the heads of the caudate nuclei during the corresponding feedback phases. The findings suggest that early stages of prototype-distortion learning are characterized by networks previously associated with strategies of explicit memory and hypothesis testing. However as learning progresses the networks change. This finding suggests that the cognitive strategies also change during prototype-distortion learning.  相似文献   

18.
Text cues facilitate the perception of spoken sentences to which they are semantically related (Zekveld, Rudner, et al., 2011). In this study, semantically related and unrelated cues preceding sentences evoked more activation in middle temporal gyrus (MTG) and inferior frontal gyrus (IFG) than nonword cues, regardless of acoustic quality (speech in noise or speech in quiet). Larger verbal working memory (WM) capacity (reading span) was associated with greater intelligibility benefit obtained from related cues, with less speech-related activation in the left superior temporal gyrus and left anterior IFG, and with more activation in right medial frontal cortex for related versus unrelated cues. Better ability to comprehend masked text was associated with greater ability to disregard unrelated cues, and with more activation in left angular gyrus (AG). We conclude that individual differences in cognitive abilities are related to activation in a speech-sensitive network including left MTG, IFG and AG during cued speech perception.  相似文献   

19.
The frontal cortex is heavily involved in oculomotor selection. Here, we investigated the neural correlates of eye movement selection during an antisaccade task in a young epileptic patient in whom the seizure focus included the frontal cortex and affected its function. Before resection surgery, the patient had difficulty in performing correct antisaccades towards the visual field contralateral to the seizure focus. Because the FEF is the only area in the human frontal cortex that is known to have a lateralized oculomotor function in the antisaccade task, this behavioural imbalance between the two visual fields suggests a disruption of FEF functioning by the nearby seizure focus. Electrocorticographic recordings at the seizure focus indeed showed that the seizure focus interfered with correct antisaccade performance. These results were in line with fMRI recordings revealing less task-related frontal activity for the hemisphere of the seizure focus, possibly reflecting diminished top-down engagement of the oculomotor system. Two months after removal of the compromised tissue, the seizures had disappeared, and antisaccade performance was the same for both visual hemifields. We conclude that a seizure focus in the frontal cortex can induce a dysfunction in the selection of eye movements, which is resolved after removal of interfering tissue.  相似文献   

20.
In previous behavioral studies, a prime syllable was presented just prior to a dichotic syllable pair, with instructions to ignore the prime and report one syllable from the dichotic pair. When the prime matched one of the syllables in the dichotic pair, response selection was biased towards selecting the unprimed target. The suggested mechanism was that the prime was inhibited to reduce conflict between task-irrelevant prime processing and task-relevant dichotic target processing, and a residual effect of the prime inhibition biased the resolution of the conflict between the two targets. The current experiment repeated the primed dichotic listening task in an event-related fMRI setting. The fMRI data showed that when the task-irrelevant prime matched the task-relevant targets, activations in posterior medial frontal cortex (pMFC) and in right inferior frontal gyrus (IFG) increased, which was considered to represent conflict and inhibition, respectively. Further, matching trials where the unprimed target was selected showed activation in right IFG, while matching trials where the primed target was selected showed activations in pMFC and left IFG, indicating the difference between inhibition-biased selection and unbiased selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号