首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The current study investigated interlimb coordination in individuals with traumatic brain injury (TBI) during overground walking. The study involved 10 participants with coordination, balance, and gait abnormalities post-TBI, as well as 10 sex- and age-matched healthy control individuals. Participants walked 12 m under two experimental conditions: 1) at self-selected comfortable walking speeds; and 2) with instructions to increase the amplitude and out-of-phase coordination of arm swinging. The gait was assessed with a set of spatiotemporal and kinematic parameters including the gait velocity, step length and width, double support time, lateral displacement of the center of mass, the amplitude of horizontal trunk rotation, and angular motions at shoulder and hip joints in sagittal plane. Interlimb coordination (coupling) was analyzed as the relative phase angles between the left and right shoulders, hips, and contralateral shoulders and hips, with an ideal out-of-phase coupling of 180° and ideal in-phase coupling of 0°. The TBI group showed much less interlimb coupling of the above pairs of joint motions than the control group. When participants were required to increase and synchronize arm swinging, coupling between shoulder and hip motions was significantly improved in both groups. Enhanced arm swinging was associated with greater hip and shoulder motion amplitudes, and greater step length. No other significant changes in spatiotemporal or kinematic gait characteristics were found in either group. The results suggest that arm swinging may be a gait parameter that, if controlled properly, can improve interlimb coordination during overground walking in patients with TBI.  相似文献   

2.
Previous studies have shown that inclusion of arm swing in gait rehabilitation leads to more effective walking recovery in patients with walking impairments. However, little is known about the correct arm-swing trajectories to be used in gait rehabilitation given the fact that changes in walking conditions affect arm-swing patterns. In this paper we present a comprehensive look at the effects of a variety of conditions on arm-swing patterns during walking. The results describe the effects of surface slope, walking speed, and physical characteristics on arm-swing patterns in healthy individuals. We propose data-driven mathematical models to describe arm-swing trajectories. Thirty individuals (fifteen females and fifteen males) with a wide range of height (1.58–1.91 m) and body mass (49–98 kg), participated in our study. Based on their self-selected walking speed, each participant performed walking trials with four speeds on five surface slopes while their whole-body kinematics were recorded. Statistical analysis showed that walking speed, surface slope, and height were the major factors influencing arm swing during locomotion. The results demonstrate that data-driven models can successfully describe arm-swing trajectories for normal gait under varying walking conditions. The findings also provide insight into the behavior of the elbow during walking.  相似文献   

3.
Most studies investigating trunk kinematics have not provided adequate quantification of spinal motion, resulting in a limited understanding of the healthy spine’s biomechanical behavior during gait. This study aimed at assessing spinal motion during gait in adolescents, adults and older individuals.Fourteen adolescents (10–18 years), 13 adults (19–35 years) and 15 older individuals (≥65 years) were included. Using a previously validated enhanced optical motion capture approach, sagittal and frontal plane spinal curvature angles and general trunk kinematics were measured during shod walking at a self-selected normal speed.Postural differences indicated that lumbar lordosis and thoracic kyphosis increase throughout adolescence and reach their peak in adulthood. The absence of excessive thoracic kyphosis in older individuals could be explained by a previously reported subdivision in those who develop excessive kyphosis and those who maintain their curve. Furthermore, adults displayed increased lumbar spine range of motion as compared to the adolescents, whereas the increased values in older individuals were found to be related to higher gait speeds. This dataset on the age-related kinematics of the healthy spine can serve as a basis for understanding pathological deviations and monitoring rehabilitation progression.  相似文献   

4.
Although studied at level surface, the trunk kinematics and pelvis-shoulder coordination of incline walking are unknown. The aim of this study was to evaluate the speed effects on pelvis-shoulder coordination and trunk movement and the cost of transport (C) during unloaded and loaded (25% of body mass) 15% incline walking. We collected 3-dimensional kinematic and oxygen consumption data from 10 physically active young men. The movements were analyzed in the sagittal plane (inclination and range of trunk motion) and the transverse plane (range of shoulder and pelvic girdle motion and phase difference). The rotational amplitude of the shoulder girdle decreased with load at all speeds, and it was lower at the highest speeds. The rotational amplitude of the pelvic girdle did not change with the different speeds. The phase difference was greater at optimal speed (3 km.hr?1, at the lowest C) in the loaded and the unloaded conditions. The trunk inclination was greater with load and increased with speed, whereas the range of trunk motion was lower in the loaded condition and decreased with increasing speed. In conclusion, the load decreased the range of girdles and trunk motion, and the pelvis-shoulder coordination seemed to be critical for the incline walking performance.  相似文献   

5.
The effects of passive interpersonal light touch (PILT) on postural stability can be observed through improved postural coordination through haptic feedback from the contact provider to the contact receiver while walking. It is unclear, however, whether PILT affects the contact receiver's detailed physical responses, such as muscle activity, body sway, and joint movements. In this study, surface electromyography and an inertial measurement unit were used simultaneously to explore changes in walking speed and control responses induced by PILT. We evaluated fourteen healthy participants for their walking speed and physical responses under two walking conditions: no-touch (NT) and PILT. As a physical response during walking, we measured muscle activity (rectus femoris, semitendinosus, tibialis anterior, and soleus muscles), body sway (pelvis and neck), and joint angles (direction of hip, knee, and ankle joint movements). In PILT condition, fingertip contact force was measured while the contact provider touched the third level of the recipient's lumbar spine. In comparison with the NT condition, PILT condition increased walking speed and decreased body sway on neck position. There were significant correlations between walking speed and neck sway regarding NT and PILT change values. Passive haptic information to the contact receiver may assist in the smooth shift of the center of gravity position during gait through interpersonal postural coordination. These findings suggest that PILT may provide an efficient and stable gait.  相似文献   

6.
Simultaneous control of lower limb stepping movements and trunk motion is important for skilled walking; adapting gait to environmental constraints requires frequent alternations in stepping and trunk motion. These alterations provide a window into the locomotor strategies adopted by the walker. The authors examined gait strategies in young and healthy older adults when manipulating step width. Anteroposterior (AP) and mediolateral (ML) smoothness (quantified by harmonic ratios) and stepping consistency (quantified by gait variability) were analyzed during narrow and wide walking while controlling cadence to preferred pace. Results indicated older adults preserved ML smoothness at the expense of AP smoothness, shortened their steps, and exhibited reduced stepping consistency. The authors conclude that older adults prioritized ML control over forward progression during adaptive walking challenges.  相似文献   

7.
The purpose of this study was to identify the movement characteristics associated with positive and negative emotions experienced during walking. Joy, contentment, anger, sadness, and neutral were elicited in 16 individuals, and motion capture data were collected as they walked while experiencing the emotions. Observers decoded the target emotions from side and front view videos of the walking trials; other observers viewed the same videos to rate the qualitative movement features using an Effort-Shape analysis. Kinematic analysis was used to quantify body posture and limb movements during walking with the different emotions. View did not affect decoding accuracy except for contentment, which was slightly enhanced with the front view. Walking speed was fastest for joy and anger, and slowest for sadness. Although walking speed may have accounted for increased amplitude of hip, shoulder, elbow, pelvis and trunk motion for anger and joy compared to sadness, neck and thoracic flexion with sadness, and trunk extension and shoulder depression with joy were independent of gait speed. More differences among emotions occurred with the Effort-Shape rather than the kinematic analysis, suggesting that observer judgments of Effort-Shape characteristics were more sensitive than the kinematic outcomes to differences among emotions.  相似文献   

8.
Late-onset Pompe disease (LOPD) is a rare disease, defined as a progressive accumulation of lysosomal glycogen resulting in muscle weakness and respiratory problems. Anecdotally, individuals often have difficulties walking, yet, there is no three-dimensional data supporting these claims. We aimed to assess walking patterns in individuals with LOPD and compare with healthy individuals. Kinematic, kinetic and spatiotemporal data were compared during walking at a self-selected speed between individuals with LOPD (n = 12) and healthy controls (n = 12). Gait profile scores and movement analysis profiles were also determined to indicate gait quality. In comparison with healthy individuals, the LOPD group demonstrated greater thoracic sway (96%), hip adduction angles (56%) and pelvic range of motion (77%) and reduced hip extensor moments (36%). Greater group variance for the LOPD group were also observed. Individuals with LOPD had a slower (15%) walking speed and reduced cadence (7%). Gait profile scores were 37% greater in the LOPD group compared to the healthy group. Proximal muscular weakness associated with LOPD disease is likely to have resulted in a myopathic gait pattern, slower selected walking speeds and deviations in gait patterns. Although individuals with LOPD presented with some common characteristics, greater variability in gait patterns is likely to be a result of wide variability in phenotype spectrum observed with LOPD. This is the first study to examine walking in individuals with LOPD using instrumented gait analysis and provides an understanding of LOPD on walking function which can help orientate physiotherapy treatment for individuals with LOPD.  相似文献   

9.
The authors investigated the modulation of gait during dark adaptation. Twenty-five women (mean age = 72 years, SD = 5 years) walked back and forth on an arbitrarily uneven walkway during normal lighting at speeds ranging from slow to fast. Participants then performed 20 trials at preferred speed after sudden reduction of lighting; the authors compared those trials with point estimates at equivalent speeds representing normal lighting. The authors estimated speed, cadence, mediolateral trunk acceleration, and mediolateral interstep trunk-acceleration variability for each trial. Participants compensated for sudden reduction of lighting by reducing their walking speed. Compared with performance at equivalent speeds during normal lighting, cadence, trunk acceleration, and interstep trunk-acceleration variability initially increased. All variables showed an asymptotic approximation toward normal values during 60-90 s of walking in subdued lighting. The authors suggest that the sudden transition from normal to marginal lighting, rather than marginal lighting itself, may challenge locomotor control.  相似文献   

10.
The authors investigated the modulation of gait during dark adaptation. Twenty-five women (mean age = 72 years, SD = 5 years) walked back and forth on an arbitrarily uneven walkway during normal lighting at speeds ranging from slow to fast. Participants then performed 20 trials at preferred speed after sudden reduction of lighting; the authors compared those trials with point estimates at equivalent speeds representing normal lighting. The authors estimated speed, cadence, mediolateral trunk acceleration, and mediolateral interstep trunk-acceleration variability for each trial. Participants compensated for sudden reduction of lighting by reducing their walking speed. Compared with performance at equivalent speeds during normal lighting, cadence, trunk acceleration, and interstep trunk-acceleration variability initially increased. All variables showed an asymptotic approximation toward normal values during 60-90 s of walking in subdued lighting. The authors suggest that the sudden transition from normal to marginal lighting, rather than marginal lighting itself, may challenge locomotor control.  相似文献   

11.
Walking is considered an automatic function which demands little attentional resources. Thus a residual attentional capacity is available for a concurrent task (dual task). Minor age-related deficits in postural control may minimize the residual attentional capacity, however this may not be detected by a simple examination of the individuals gait performance. This study investigated the use of challenging dual task combinations to detect age related changes in gait performance. Eleven community-dwelling elderly (mean age 76 years) and 13 young subjects (mean age 26 years) participated in the study. The participants walked along a figure-of-eight track at a self-selected speed. The effect of introducing a concurrent cognitive task and a concurrent functional motor task was evaluated. Stride-to-stride variability was measured by heel contacts and by trunk accelerometry. In response to the cognitive task the elderly increased their temporal stride-to-stride variability by 39% in the walking task and by 57% in the combined motor task. These increases were significantly larger than observed for the young. Equivalent decreases in trunk acceleration autocorrelation coefficients and gait speed were found. A combination of sufficiently challenging motor tasks and concurrent cognitive tasks can reveal signs of limited residual attentional capacity during walking amongst the elderly.  相似文献   

12.
Investigations of gait in older adults with diabetes mellitus (DM) have been primarily focused on lower limb biomechanical parameters. Yet, the upper body accounts for two thirds of the body's mass, and head and trunk control are critical for balance. The authors examined head and trunk control during self-selected comfortable, fast, and dual-task walking and the relationship between balance confidence and potential head-trunk stiffening strategies in older adults with DM without diagnosed diabetic peripheral neuropathy (DPN). Twelve older adults with DM without diagnosed DPN (DM group) and 12 without DM (no-DM group) were recruited. Walking speed, peak-to-peak head and trunk roll displacement, head and trunk roll velocity, and head-trunk correlation were measured while walking at a self-selected comfortable or fastest possible speed with or without a secondary cognitive task. The Activities-specific Balance Confidence scale measured balance confidence. Subtle group differences in axial segmental control (lower trunk roll velocity; higher head-trunk correlation) were apparent in older adults with DM even in the absence of DPN. Balance confidence was 19% lower in the DM group than in the no-DM group, and partially explained (34%) the group difference in head-trunk stiffening. These results emphasize the need for proactive monitoring of postural control and balance confidence before the onset of DPN.  相似文献   

13.
Abstract

The continuous pointing task uses target-directed pointing responses to determine how perceived distance traveled is estimated during forward linear walking movements. To more precisely examine the regulation of this online process, the current study measured upper extremity joint angles and step-cycle kinematics in full vision and no-vision continuous pointing movements. Results show perceptual under-estimation of traveled distance in no-vision trials compared to full vision trials. Additionally, parsing of the shoulder plane of elevation trajectories revealed discontinuities that reflected this perceptual under-estimation and that were most frequently coupled with the early portion of the right foot swing phase of the step-cycle. This suggests that spatial updating may be composed of discrete iterations that are associated with gait parameters.  相似文献   

14.
Backward slope walking was considered as a practical rehabilitation and training skill. However, its gait stability has been hardly studied, resulting in its limited application as a rehabilitation tool. In this study, the effect of walking direction and slope grade were investigated on the local dynamic stability of the motion of lower extremity joints and trunk segment during backward and forward upslope walking (BUW/FUW). The local divergence exponents (λS) of 16 adults were calculated during their BUW and FUW at grades of 0%, 5%, 10%, and 15%. Mean standard deviation over strides (MeanSD) was analyzed as their gait variability. Backward walking showed larger λS for the abduction-adduction and rotational angles of knee and ankle on inclined surface than forward walking, while λS for hip flexion-extension angle at steeper grades was opposite. No grade effect for any joint existed during BUW, while λS increased with the increasing grade during FUW. As to the trunk, walking direction did little impact on λS. Still, significant larger λS for its medial-lateral and vertical motion were found at the steeper grades during both FUW and BUW. Results indicate that during BUW, the backward direction may influence the stability of joint motions, while the trunk stability was challenged by the increasing grades. Therefore, BUW may be a training tool for the stability of both upper and lower body motion during gait.  相似文献   

15.
Patients with non-specific low back pain, or a similar disorder, may stiffen their trunk, which probably alters their walking coordination. To study the direct effects of increasing trunk stiffness, we experimentally increased trunk stiffness during walking, and compared the results with what is known from the literature about gait coordination with, e.g., low back pain. Healthy subjects walked on a treadmill at 3 speeds (0.5, 1.0 and 1.5 m/s), in three conditions (normal, while contracting their abdominal muscles, or wearing an orthopedic brace that limits trunk motions). Kinematics of the legs, thorax and pelvis were recorded, and relative Fourier phases and amplitudes of segment motions were calculated. Increasing trunk stiffness led to a lower thorax–pelvis relative phase, with both a decrease in thorax–leg relative phase, and an increase in pelvis–leg relative phase, as well as reduced rotational amplitude of thorax relative to pelvis. While lower thorax–pelvis relative phase was also found in patients with low back pain, higher pelvis–leg relative phase has never been reported in patients with low back pain or related disorders. These results suggest that increasing trunk stiffness in healthy subjects causes short-term gait coordination changes which are different from those seen in patients with back pain.  相似文献   

16.
Adolescents tend to exhibit more variability in their gait patterns than adults, suggesting a lack of gait maturity during this period of ongoing musculoskeletal growth and development. However, there is a lack of consensus over the age at which mature gait patterns are achieved and the factors contributing to gait maturation. Therefore, the purpose of this study was to investigate gait control and maturity in adolescents by determining if differences existed between adolescents and adults in a) the amount of spatiotemporal variability of walking and running patterns across a range of speeds, and b) how swiftly gait patterns are adapted to increasing gait speed during the walk-to-run transition. Forty-six adolescents (10–12-year-olds, n = 17; 13–14-year-olds, n = 12; and 15–17-year-olds, n = 17) and 12 young adults completed an incrementally ramped treadmill test (+0.2 km·h−1 every 30 s) to determine the preferred transition speed (PTS) during a walk-to-run transition. Age-related differences in the variability of stride lengths and stride durations were assessed across 4 speeds (self-selected walking speed, PTS − 0.06 m·s−1, PTS + 0.06 m·s−1, PTS + 0.83 m·s−1). Repeated measures ANOVAs (p < 0.05) compared coefficients of variation for these spatiotemporal parameters, while a one-way ANOVA compared the numbers of gait transitions and speed increments used to identify PTS between the adolescent groups and young adults. Compared to adults, 10–12yo exhibited more spatiotemporal variability during all gait conditions, while 13–17yo only exhibited more variability at PTS + 0.06 m·s−1. No age-dependent pattern was observed in PTS values, but 10–12yo completed more gait transitions over more speed increments than 15–17yo and adults. The development of mature gait patterns is thus a progressive process, with walking maturing at an earlier age than running. As 10-12yo were unable to swiftly adapt gait patterns to the changing task demands, their control mechanisms of gait may not have fully matured yet.  相似文献   

17.
The objective of this study was to determine (1) if a novel haptic feedback system could increase the walking speed of older adults while it is being employed during overground walking and (2) whether the frequency at which this feedback was presented would have a differential impact on the ability of users to change walking speed while it was present. Given that peak thigh extension has been found to be a biomechanical surrogate for stride length, and consequently gait speed, vibrotactile haptic feedback was provided to the participants' thighs as a cue to increase peak thigh extension while the effect on gait speed was monitored. Ten healthy community-dwelling older adults (68.4 ± 4.1 years) participated. Participants' peak thigh extension, cadence, normalized stride length and velocity, along with their coefficients of variation (COV) were compared across baseline normal and fast walking (with no feedback) and three different frequency of feedback conditions. The findings indicated that, compared to self-selected normal and fast walking speeds, peak thigh extension was significantly increased when feedback was present and after it was withdrawn in a post-test. An increase in thigh extension led to an increase in stride length and, consequently, an increase in stride velocity compared to normal speed. There were no significant differences in the gait parameters as a function of feedback frequency during its application. In conclusion, while present, the haptic feedback system increased thigh extension and walking speed in older adults regardless of the feedback frequency and when the feedback was withdrawn, participants could maintain an increase in those parameters.  相似文献   

18.
Head flexion is destabilizing in older individuals during quiet stance, yet the effect head flexion has on gait is not known. The study examined whether head flexion and gait parameters were altered when walking freely and fixed to a visual target, at different walking speeds. 15 young (23 ± 4 years) and 16 older (76 ± 6 years) healthy females walked at three different walking speeds (slow, comfortable, and fast) under two visual conditions (natural and fixed [focusing on a visual target set at eye level]). Head flexion was assessed using 2D video analysis, whilst gait parameters (step length, double support time, step time, and gait stability ratio) were recorded during a 9 m flat walkway. A mixed design ANOVA was performed for each variable, with age as the between-subject factor and, visual condition and walking speed as within-subject factors. When walking freely, older displayed a greater need for head flexion between walking speeds (P < 0.05) when compared to young. Walking under fixed condition reduced head flexion at all walking speeds in the older (P < 0.05), but had no effect on the young (P > 0.05). Walking at different speeds showed no difference in head flexion when walking under either visual condition and had no effect on gait stability for both groups. Despite older displaying differences in head flexion between visual conditions, there was no effect on gait parameters. Walking speed presented trivial difference in head flexion in older females, whilst overall gait stability was unaffected by different walking speeds.  相似文献   

19.
The authors examined how individuals adapt their gait and regulate their body configuration before altering direction during walking. Eight young adults were asked to change direction during walking with different turning angles (0deg;, 45deg;, 90deg;), pivot foot (left, right), and walking speeds (normal and fast). The authors used video and force platform systems to determine participants' whole-body center of mass and the center of pressure during the step before they changed direction. The results showed that anticipatory postural adjustments occurred during the prior step and occurred earlier for the fast walking speed. Anticipatory postural adjustments were affected by all 3 variables (turn angle, pivot foot, and speed). Participants leaned backward and sideward on the prior step in anticipation of the turn. Those findings indicate that the motor system uses central control mechanisms to predict the required anticipatory adjustments and organizes the body configuration on the basis of the movement goal.  相似文献   

20.
The authors examined how individuals adapt their gait and regulate their body configuration before altering direction during walking. Eight young adults were asked to change direction during walking with different turning angles (0 degree, 45 degree, 90 degree), pivot foot (left, right), and walking speeds (normal and fast). The authors used video and force platform systems to determine participants' whole-body center of mass and the center of pressure during the step before they changed direction. The results showed that anticipatory postural adjustments occurred during the prior step and occurred earlier for the fast walking speed. Anticipatory postural adjustments were affected by all 3 variables (turn angle, pivot foot, and speed). Participants leaned backward and sideward on the prior step in anticipation of the turn. Those findings indicate that the motor system uses central control mechanisms to predict the required anticipatory adjustments and organizes the body configuration on the basis of the movement goal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号