首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five experiments investigated the importance of shape and object manipulation when 12-month-olds were given the task of individuating objects representing exemplars of kinds in an event-mapping design. In Experiments 1 and 2, results of the study from Xu, Carey, and Quint (2004, Experiment 4) were partially replicated, showing that infants were able to individuate two natural-looking exemplars from different categories, but not two exemplars from the same category. In Experiment 3, infants failed to individuate two shape-similar exemplars (from Pauen, 2002a) from different categories. However, Experiment 4 revealed that allowing infants to manipulate objects shortly before the individuation task enabled them to individuate shape-similar objects from different categories. In Experiment 5, allowing object manipulation did not induce infants to individuate natural-looking objects from the same category. These findings suggest that object manipulation facilitates kind-based individuation of shape-similar objects by 12-month-olds.  相似文献   

2.
A new manual search method was used to investigate the impact of naming on object individuation in 12-month-old infants. In Experiment 1, on a two-word trial, an experimenter looked into a box while the infant was watching and provided two labels (e.g., "Look, a fep!" and "Look, a wug!"). On a one-word trial, the experimenter instead repeated the same label (e.g., "Look, a zav!"). After the infant retrieved one object from the box, subsequent search behavior was recorded. Infants searched more persistently (i.e., for a longer duration) after hearing two labels than one, suggesting that hearing two labels led the infants to expect two objects inside the box. In Experiment 2, infants' search behavior did not differ depending on whether they heard one or two emotional expressions, suggesting that the facilitation effect observed in Experiment 1 may be specific to linguistic expressions. Thus, we provide the first evidence that infants as young as 12 months are able to use intentional and referential cues to guide their object representations. These findings also suggest that a rudimentary version of the mutual-exclusivity constraint may be functional by the end of the first year.  相似文献   

3.
There has been some debate about whether infants 10 months and younger can use featural information to individuate objects. The present research tested the hypothesis that negative results obtained with younger infants reflect limitations in information processing capacities rather than the inability to individuate objects based on featural differences. Infants aged 9.5 months saw one object (i.e. a ball) or two objects (i.e. a box and a ball) emerge successively to opposite sides of an opaque occluder. Infants then saw a single ball either behind a transparent occluder or without an occluder. Only the infants who saw the ball behind the transparent occluder correctly judged that the one-ball display was inconsistent with the box-ball sequence. These results suggest that: (a) infants categorize events involving opaque and transparent occluders as the same kind of physical situation (i.e. occlusion) and (b) support the notion that infants are more likely to give evidence of object individuation when they need to reason about one kind of event (i.e. occlusion) than when they must retrieve and compare categorically distinct events (i.e. occlusion and no-occlusion).  相似文献   

4.
Mendes N  Rakoczy H  Call J 《Cognition》2008,106(2):730-749
Developmental research suggests that whereas very young infants individuate objects purely on spatiotemporal grounds, from (at latest) around 1 year of age children are capable of individuating objects according to the kind they belong to and the properties they instantiate. As the latter ability has been found to correlate with language, some have speculated whether it might be essentially language dependent and therefore uniquely human. Existing studies with non-human primates seem to speak against this hypothesis, but fail to present conclusive evidence due to methodological shortcomings. In the present experiments we set out to test non-linguistic object individuation in three great ape species with a refined manual search methodology. Experiment 1 tested for spatiotemporal object individuation: Subjects saw 1 or 2 objects simultaneously being placed inside a box in which they could reach, and then in both conditions only found 1 object. After retrieval of the 1 object, subjects reached again significantly more often when they had seen 2 than when they had seen 1 object. Experiment 2 tested for object individuation according to property/kind information only: Subjects saw 1 object being placed inside the box, and then either found that object (expected) or an object of a different kind (unexpected). Analogously to Experiment 1, after retrieval of the 1 object, subjects reached again significantly more often in the unexpected than in the expected condition. These results thus confirm previous findings suggesting that individuating objects according to their property/kind is neither uniquely human nor essentially language dependent. It remains to be seen, however, whether this kind of object individuation requires sortal concepts as human linguistic thinkers use them, or whether some simpler form of tracking properties is sufficient.  相似文献   

5.
Infants’ ability to accurately represent and later recognize previously viewed objects, and conversely, to discriminate novel objects from those previously seen improves remarkably over the first two years of life. During this time, infants acquire extensive experience viewing and manipulating objects and these experiences influence their physical reasoning. Here we posited that infants’ observations of object feature stability (rigid versus malleable) can influence the use of those features to individuate two successively viewed objects. We showed 8.5-month-olds a series of objects that could or could not change shape, then assessed their use of shape as a basis for object individuation. Infants who explored rigid objects later used shape differences to individuate objects; however, infants who explored malleable objects did not. This outcome suggests that the latter infants did not take into account shape differences during the physical reasoning task and provides further evidence that infants’ attention to object features can be readily modified based on recent experiences.  相似文献   

6.
Accurate representation of a changing environment requires individuation-the ability to determine how many numerically distinct objects are present in a scene. Much research has characterized early individuation abilities by identifying which object features infants can use to individuate throughout development. However, despite the fact that without memory featural individuation would be impossible, little is known about how memory constrains object individuation. Here, we investigated infants' ability to individuate multiple objects at once and asked whether individuation performance changes as a function of memory load. In three experiments, 18-month-old infants saw one, two, or three objects hidden and always saw the correct number of objects retrieved. On some trials, one or more of these objects surreptitiously switched identity prior to retrieval. We asked whether infants would use this identity mismatch to individuate and, hence, continue searching for the missing object(s). We found that infants were less likely to individuate objects as memory load grew, but that infants individuated more successfully when the featural contrast between the hidden and retrieved objects increased. These results suggest that remembering more objects may result in a loss of representational precision, thereby decreasing the likelihood of successful individuation. We close by discussing possible links between our results and findings from adult working memory.  相似文献   

7.
In laboratory experiments, infants are sensitive to patterns of visual features that co-occur (e.g., Fiser & Aslin, 2002). Once infants learn the statistical regularities, however, what do they do with that knowledge? Moreover, which patterns do infants learn in the cluttered world outside of the laboratory? Across 4 experiments, we show that 9-month-olds use this sensitivity to make inferences about object properties. In Experiment 1, 9-month-old infants expected co-occurring visual features to remain fused (i.e., infants looked longer when co-occurring features split apart than when they stayed together). Forming such expectations can help identify integral object parts for object individuation, recognition, and categorization. In Experiment 2, we increased the task difficulty by presenting the test stimuli simultaneously with a different spatial layout from the familiarization trials to provide a more ecologically valid condition. Infants did not make similar inferences in this more distracting test condition. However, Experiment 3 showed that a social cue did allow inferences in this more difficult test condition, and Experiment 4 showed that social cues helped infants choose patterns among distractor patterns during learning as well as during test. These findings suggest that infants can use feature co-occurrence to learn about objects and that social cues shape such foundational learning in distraction-filled environments.  相似文献   

8.
Around 1 year of age, infants develop the ability to individuate objects in the absence of spatiotemporal information. Some have proposed that this capacity relies on the emergence of language and, in particular, that comprehending an object's label is required to individuate it as a particular kind. One approach to testing this hypothesis is to conduct experiments on pre-linguistic human infants. A second is to test non-linguistic animals. We followed the second approach, exploring whether semi-free-ranging rhesus macaques can individuate objects using property/kind information. To make the results most directly comparable, we adapted a reaching paradigm used to examine property/kind individuation in infants. Results from three experiments demonstrate that, like 12-month-old infants, adult rhesus macaques can use both spatiotemporal and property/kind information to individuate food objects. In a fourth experiment designed to examine which properties are used to individuate food objects, results revealed that rhesus use color, but not shape. These results, together with experiments involving different procedures, provide support for the conclusion that in the absence of linguistic abilities, some non-human primates spontaneously use property/kind information to individuate objects.  相似文献   

9.
The role of language in acquiring object kind concepts in infancy   总被引:6,自引:0,他引:6  
Xu F 《Cognition》2002,85(3):223-250
Four experiments investigated whether 9-month-old infants could use the presence of labels to help them establish a representation of two distinct objects in a complex object individuation task. We found that the presence of two distinct labels facilitated object individuation, but the presence of one label for both objects, two distinct tones, two distinct sounds, or two distinct emotional expressions did not. These findings suggest that language may play an important role in the acquisition of sortal/object kind concepts in infancy: words may serve as "essence placeholders". Implications for the relationship between language and conceptual development are discussed.  相似文献   

10.
Do 9-month-old infants expect distinct words to refer to kinds?   总被引:1,自引:0,他引:1  
In 3 experiments, 9-month-old infants' expectations for what distinct count noun labels refer to were investigated. In Experiment 1, a box was opened to reveal 2 objects inside during familiarization: either 2 identical objects or 2 different objects. Test trials followed the same procedure, except before the box was opened, the contents were described using 2 distinct labels ("I see a wug! I see a dak!") or the same label twice ("I see a zav! I see a zav!"). Infants who heard a label repeated twice looked longer at 2 different objects versus 2 identical objects, whereas infants who heard 2 distinct labels showed a different pattern of looking. Experiments 2 and 3 presented infants with object pairs that only differed in shape or color, and it was found that infants expected the different-shaped (but not the different-colored) objects to be labeled by distinct count nouns. Because the property of shape is a cue to kind membership and the property of color is not, these results suggest that even at the beginning of word learning, infants may expect distinct labels to refer to distinct kinds of objects.  相似文献   

11.
Two experiments examined whether 4‐month‐olds (= 120) who were induced to assign two objects to different categories would then be able to take advantage of these contrastive categorical encodings to individuate and track the objects. In each experiment, infants first watched functional demonstrations of two tools, a masher and tongs (Experiment 1) or a marker and a knife (Experiment 2). Next, half the infants saw the two tools brought out alternately from behind a screen, which was then lowered to reveal only one of the tools (different‐objects condition); the other infants saw similar events except that the same tool was shown on either side of the screen (same‐object condition). In both experiments, infants in the different‐objects condition looked reliably longer than those in the same‐object condition, and this effect was eliminated if the demonstrations involved similar but non‐functional actions. Together, these results indicate that infants (a) were led by the functional demonstrations they observed to assign the two tools to distinct categories, (b) recruited these categorical encodings to individuate and track the tools, and hence (c) detected a violation in the different‐objects condition when the screen was lowered to reveal only one tool. Categorical information thus plays a privileged role in individuation and identity tracking from a very young age.  相似文献   

12.
Looking-time studies examined whether 11-month-old infants can individuate two pairs of objects using only shape information. In order to test individuation, the object pairs were presented sequentially. Infants were familiarized either with the sequential pairs, disk-triangle/disk-triangle (XY/XY), whose shapes differed within but not across pairs, or with the sequential pairs, disk-disk/triangle-triangle (XX/YY), whose shapes differed across but not within pairs. The XY/XY presentation looked to adults like a single pair of objects presented repeatedly, whereas the XX/YY presentation looked like different pairs of objects. Following familiarization to these displays, infants were given a series of test trials in which the screen was removed, revealing two pairs of objects in one of two outcomes, XYXY or XXYY. On the first test trial, infants familiarized with the identical pairs (XY/XY) apparently expected a single pair to be revealed because they looked longer than infants familiarized with the distinct pairs (XX/YY). Infants who had seen the distinct pairs apparently expected a double pair outcome. A second experiment showed outcomes of a single XY pair. This outcome is unexpected for XX/YY-familiarized infants but expected for XY/XY-familiarized infants, the reverse of Experiment 1. This time looking times were longer for XX/YY infants. Eleven-month-olds appear to be able to represent not just individual objects but also pairs of objects. These results suggest that if they can group the objects into sets, infants may be able to track more objects than their numerosity limit or available working memory slots would normally allow. We suggest possible small exact numerosity representations that would allow tracking of such sets.  相似文献   

13.
《Cognitive development》2006,21(2):81-92
Two experiments investigated 5-month-old infants’ amodal sensitivity to numerical correspondences between sets of objects presented in the tactile and visual modes. A classical cross-modal transfer task from touch to vision was adopted. Infants were first tactually familiarized with two or three different objects presented one by one in their right hand. Then, they were presented with visual displays containing two or three objects. Visual displays were presented successively (Experiment 1) or simultaneously (Experiment 2). In both experiments, results showed that infants looked longer at the visual display which contained a different number of objects from the tactile familiarization phase. Taken together, the results revealed that infants can detect numerical correspondences between a sequence of tactile and visual stimulation, and they strengthen the hypothesis of amodal and abstract representation of small numbers of objects (two or three) across sensory modalities in 5-month-old infants.  相似文献   

14.
Infants have a bandwidth-limited object working memory (WM) that can both individuate and identify objects in a scene, (answering ‘how many?’ or ‘what?’, respectively). Studies of infants’ WM for objects have typically looked for limits on either ‘how many’ or ‘what’, yielding different estimates of infant capacity. Infants can keep track of about three individuals (regardless of identity), but appear to be much more limited in the number of specific identities they can recall. Why are the limits on ‘how many’ and ‘what’ different? Are the limits entirely separate, do they interact, or are they simply two different aspects of the same underlying limit?We sought to unravel these limits in a series of experiments which tested 9- and 12-month-olds’ WM for object identities under varying degrees of difficulty. In a violation-of-expectation looking-time task, we hid objects one at a time behind separate screens, and then probed infants’ WM for the shape identity of the penultimate object in the sequence. We manipulated the difficulty of the task by varying both the number of objects in hiding locations and the number of means by which infants could detect a shape change to the probed object. We found that 9-month-olds’ WM for identities was limited by the number of hiding locations: when the probed object was one of two objects hidden (one in each of two locations), 9-month-olds succeeded, and they did so even though they were given only one means to detect the change. However, when the probed object was one of three objects hidden (one in each of three locations), they failed, even when they were given two means to detect the shape change. Twelve-month-olds, by contrast, succeeded at the most difficult task level.Results show that WM for ‘how many’ and for ‘what’ are not entirely separate. Individuated objects are tracked relatively cheaply. Maintaining bindings between indexed objects and identifying featural information incurs a greater attentional/memory cost. This cost reduces with development. We conclude that infant WM supports a small number of featureless object representations that index the current locations of objects. These can have featural information bound to them, but only at substantial cost.  相似文献   

15.
F Xu  S Carey  J Welch 《Cognition》1999,70(2):137-166
The present studies investigate infants reliance on object kind information in solving the problem of object individuation. Two experiments explored whether adults, 10- and 12-month-old infants could use their knowledge of ducks and cars to individuate an ambiguous array consisting of a toy duck perched on a toy car into two objects. A third experiment investigated whether 10-month-old infants could use their knowledge of cups and shoes to individuate an array consisting of a cup perched on a shoe into two objects. Ten-month-old infants failed to use object kind information alone to resolve the ambiguity with both pairs of objects. In contrast, infants this age succeeded in using spatiotemporal information to segment the array into two objects, i.e. they succeeded if shown that the duck moved independently relative to the car, or the cup relative to the shoe. Twelve-month-old infants, as well as adults, succeeded at object individuation on the basis of object kind information alone. These findings shed light on the developmental course of object individuation and provide converging evidence for the Object-first Hypothesis [Xu, F., Carey, S., 1996; Xu, F., 1997b]. Early on, infants may represent only one concept that provides criteria for individuation, namely physical object; kind concepts such as duck, car, cup, and shoe may be acquired later in the first year of life.  相似文献   

16.
T Wilcox 《Cognition》1999,72(2):125-166
Recent research indicates that when an event-monitoring paradigm is used, infants as young as 4.5 months of age demonstrate the ability to use featural information to individuate objects involved in occlusion events (Wilcox & Baillargeon, 1998a, Object individuation in infancy: The use of featural information in reasoning about occlusion events. Cognitive Psychology 37, 97-155; Wilcox & Baillargeon, 1998b, Object individuation in young infants: Further evidence with an event monitoring task. Developmental Science 1, 127-142). For example, in one experiment (Wilcox & Baillargeon, 1998b, Object individuation in young infants: Further evidence with an event monitoring task. Developmental Science 1, 127-142) 4.5-month-old infants saw a test event in which a green ball with colored dots disappeared behind one edge of a narrow or wide screen, and a red box with silver thumbtacks appeared at the other edge; the narrow screen was too narrow to hide both objects simultaneously, whereas the wide screen was sufficiently wide to hide both objects at the same time. The infants looked reliably longer at the narrow- than at the wide-screen test event. These and control results suggested that the infants had: (a) used the featural differences between the ball and box to conclude that two objects were involved in the event; (b) judged that both objects could fit simultaneously behind the wide but not the narrow screen; and hence (c) were surprised by the narrow-screen event. The present experiments build on these initial findings by investigating the features to which infants are most sensitive. Four experiments were conducted with infants 4.5-11.5 months of age using the same procedure, except that only one feature was manipulated at a time: shape, size, pattern, or color. The results indicated that 4.5-month-olds use both shape and size features to individuate objects involved in occlusion events. However, it is not until 7.5 months that infants use pattern, and 11.5 months that infants use color, to reason about object identity. It is suggested that these results reflect biases in the kind of information that infants attend to when reasoning about occlusion events. Possible sources of bias are discussed.  相似文献   

17.
Leslie AM  Kaldy Z 《Journal of experimental child psychology》2001,78(1):61-74; discussion 98-106
Currently there are disputes in the infancy literature concerning when infants are first able to individuate physical objects by their features or properties. This issue has taken on new significance following claims that individuation by feature is linked to the emergence of object kind concepts toward the end of the first year. Needham (2001, this issue) presents evidence that infants as young as 4.5 months old can individuate objects by feature. We locate this controversy within the framework of brain mechanisms that index or track individual objects, drawing upon theories of attention and working memory developed in the study of adults. We find that Needham's work contributes to two issues: categorization and the effect of object history on the individuation of objects in a complex display.  相似文献   

18.
The ability to code location in continuous space is fundamental to spatial behavior. Existing evidence indicates a robust ability for such coding by 12 months, but systematic evidence on earlier origins is lacking. A series of studies investigated 5-month-olds’ ability to code the location of an object hidden in a sandbox, using a looking-time paradigm. In Experiment 1, after familiarization with a hiding-and-finding sequence at one location, infants looked longer at an object being disclosed from a location 12 inches (30 cm) away than at an object emerging from the hiding location, showing they were able to code location in continuous space. In Experiment 2, infants reacted with greater looking when objects emerged from locations 8 inches (20 cm) away from the hiding location, showing that location coding was more finely grained than could be inferred based on the first study. In Experiment 3, infants were familiarized with an object shown in hiding-and-finding sequences at two different locations. Infants looked longer at objects emerging 12 inches (30 cm) away from the most recent hiding location than to emergence from the other location, showing that infants could code location even when events had previously occurred at each location. In Experiment 4, after familiarization with two objects with different shapes, colors, and sounding characteristics, shown in hiding-and-finding sequences in two locations, infants reacted to location violations as they had in Experiment 3. However, they did not react to object violations, that is, events in which the wrong object emerged from a hiding location. Experiment 5 also found no effect of object violation, even when the infants initially saw the two objects side by side. Spatiotemporal characteristics may play a more central role in early object individuation than they do later, although further study is required.  相似文献   

19.
This study explored the duration of cats' working memory for hidden objects. Twenty-four cats were equally divided into four groups, which differed according to the type of visual cues displayed on and/or around the hiding boxes. During eight sessions, the four groups of cats were trained to locate a desirable object hidden behind one of the four boxes placed in front of them. Then, the cats were tested with retention intervals of 0, 10, 30 and 60 s. Results revealed no significant differences between the groups during training or testing. In testing, the cats' accuracy to locate the hidden object rapidly declined between 0 and 30 s but remained higher than chance with delays of up to 60 s. The analysis of errors also indicated that the cats searched as a function of the proximity of the target box and were not subjected to intertrial proactive interference. This experiment reveals that the duration of cats' working memory for disappearing objects is limited and the visual cues displayed on and/or around the boxes do not help the cats to memorize a hiding position. In discussion, we explore why the duration of cats' working memory for disappearing objects rapidly declined and compare these finding with those from domestic dogs. The irrelevance of visual cues displayed on and around the hiding boxes on cats' retention capacity is also discussed.  相似文献   

20.
The present research examined whether 3-month-old infants, the youngest found so far to engage in goal-related reasoning about human agents, would also act as if they attribute goals to a novel non-human agent, a self-propelled box. In two experiments, the infants seemed to have interpreted the box’s actions as goal-directed after seeing the box approach object A as opposed to object B during familiarization. They thus acted as though they expected the box to maintain this goal and responded with increased attention when the box approached object B during test. In contrast, when object B was absent during familiarization and introduced afterwards, the infants’ responses were consistent with their having recognized that they had no information to predict which of the two objects the box should choose during test and therefore responded similarly when the box approached either object. However, if object B was absent during familiarization and object A was in different positions but the box persistently approached it, thus demonstrating equifinal variations in its actions, the infants again acted as though they attributed to the box a goal directed towards object A and expected the box to maintain this goal even when object B was introduced and hence responded with prolonged looking when the box failed to do so during test. These results are consistent with the notion that (a) infants as young as 3 months appear to attribute goals to both human and non-human agents, and (b) even young infants can use certain behavioral cues, e.g. equifinal variations in agents’ actions, to make inferences about agents’ goals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号