首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The present study examined the effects of intraseptal administration of the GABAergic agonist muscimol on performance of a radial-arm maze (RAM) task. Male Long-Evans rats were trained to perform a RAM task in which a 1-h delay was imposed between the sample and the test session. In this task rats have access to four out of eight maze arms during a predelay session. Following a 1-h delay, rats are returned to the maze and allowed to freely choose among all eight arms. Arms not blocked during the predelay session are baited, and entry into an arm chosen during the predelay session or a repeated entry into a postdelay chosen arm constitutes an error. Following acquisition, animals were implanted with a single cannula aimed at the medial septum. A within-subjects design was utilized to examine the effects of intraseptal administration of muscimol (0.0, 0.75, 1.5 or 3.0 nmol) on performance in this task. All drugs or artificial cerebrospinal fluid were administered immediately following the predelay session. Muscimol, a GABA-A agonist, produced a dose-dependent impairment in maze performance as evidenced by fewer correct choices in the first four postdelay choices and an increase in the number of errors. Intraseptal administration of muscimol did not significantly alter latency per choice on the RAM task nor did it affect locomotor activity levels. Muscimol-induced impairments were also observed when a 4-h delay was imposed between the fourth and the fifth maze selection, suggesting that the behavioral deficit represents an inability to store or retain spatial working memories rather than a general performance deficit. These data indicated that pharmacological manipulation of GABA-A receptors within the medial septum modifies working memory processes. The potential interaction of GABAergic and cholinergic mechanisms in the modulation of working memory processes is discussed.  相似文献   

2.
The behavioral effects of two amnestic treatments (intraseptal chlordiazepoxide (CDP) and intraventricular AF64A) were examined in a delayed-nonmatch-to-sample radial-arm maze (DNMTS) paradigm. The types of errors induced by these treatments in this working memory task were assessed to determine how acute and chronic disruptions of the medial septum affect different phases of working memory (encoding, maintenance, retrieval). Rats were initially trained to perform the DNMTS task with a 1-h delay imposed between the training and the testing sessions. The first experiment demonstrated that intraseptal injection of 30 nmoles of CDP did not produce state-dependent learning. Rats were injected immediately following training with CDP or artificial cerobrospinal fluid (CSF; drug vehicle) and then prior to testing with CDP or CSF. Injection of CDP immediately following training (CDP–CSF) impaired performance of the task regardless of whether CDP was also administered before the postdelay test (CDP–CDP). Rats infused with CDP only before the postdelay test (CSF–CDP) exhibited a proactive deficit characterized by intact retention of the predelay information (i.e., arms entered prior to the delay) but impaired performance on the postdelay component (arms entered only after the delay). These data indicate: (i) that state dependency does not explain the working memory deficits induced by intraseptal CDP; (ii) that pretest CDP disrupts the storage and utilization of working memory for current arm selections. The second experiment examined the behavioral effects induced by a permanent disruption of the cholinergic septohippocampal pathway produced by icv injection of the cholinotoxin AF64A. Rats were initially trained on the DNMTS task and then bilaterally injected icv with either AF64A (2.5 nmoles/side) or CSF. AF64A-treated rats exhibited a significant impairment of performance compared to CSF-treated controls. In contrast to the impairment exhibited by CDP-treated rats in Experiment 1, the performance of AF64A-treated rats displayed a deficit in the maintenance/retrieval of information acquired during RAM trainingandan impairment in ability to store current spatial information in working memory to guide postdelay testing performance. These studies demonstrate that acute and chronic disruptions of the septohippocampal pathway produce distinct profiles of cognitive impairment that should help to reveal the behavioral and neurobiological characteristics of spatial memory.  相似文献   

3.
GABAA/benzodiazepine receptors in the medial septum modulate the activity of cholinergic neurons that innervate the hippocampus. Injection of benzodiazepine (BDZ) agonists into the medial septum impairs working memory performance and decreases high-affinity choline transport (HAChT) in the hippocampus. In contrast, intraseptal injection of the BDZ antagonist flumazenil increases HAChT and prevents the memory deficits induced by systemic BDZs. The present studies attempted to further characterize the behavioral effects of medial septal injections of flumazenil to an endogenous negative modulator of the GABAA/BDZ receptor complex, diazepam binding inhibitor (DBI). Male Sprague–Dawley rats were cannulated to study the effects of intraseptal injections of these BDZ ligands on spatial working memory, anxiety-related behaviors in the elevated plus maze, and on general locomotor activity. Intraseptal flumazenil (10 nmol/0.5 μl) produced a delay-dependent enhancement of DNMTS performance after an 8-h, but not a 4-h, delay interval. This promnestic dose of flumazenil had no effect on locomotor activity and did not produce changes in measures of anxiety on the plus maze. Intraseptal injection of DBI had no effect (8 nmol/0.5 μl) or slightly impaired (4 nmol/0.5 μl) DNMTS radial maze performance following an 8-h delay, without producing changes in locomotion or plus maze behavior. These data demonstrate that flumazenil has a unique profile of activity in enhancing working memory following intraseptal injection.  相似文献   

4.
Male Sprague-Dawley rats, trained to perform a delayed-non-match-to-sample eight-arm radial maze task, were implanted with a single cannula aimed at the medial septal nucleus. A within-subjects design was utilized to examine the effects of intraseptal administration of bicuculline (0.5 micrograms) on performance of this task with 1- and 4-h delay intervals imposed between choices four and five. Administration of bicuculline immediately following the first four choices produced an impairment in maze performance at both a 1- and a 4-h delay interval. This treatment also produced an increase in latency per choice. Bicuculline-induced impairments were not observed when administered 2 h following the predelay session (2 h prior to testing). These data support previous observations that pharmacological manipulation of GABAergic activity within the septum modifies working memory processes.  相似文献   

5.
In rats, amygdala benzodiazepine-like immunoreactivity decreases by 29% immediately after the animals step down from the platform of an inhibitory avoidance apparatus and decreases by a further 45% immediately after they receive a training footshock. The decrease is attributable to a release of diazepam or diazepam-like molecules. The immediate post-training intraamygdala injection of the central benzodiazepine antagonist flumazenil (10 nmole/amygdala) causes memory facilitation, and that of the GABA-A agonist muscimol (0.005 to 0.5 nmole) causes retrograde amnesia. Pretraining ip flumazenil administration (2.0 and 5.0 mg/kg) attenuates the effect of post-training muscimol by a factor of at least 100. The higher dose of pretraining flumazenil also causes memory facilitation. The data suggest that post-training consolidation is down-regulated by a GABA-A mechanism in the amygdala modulated by endogenous benzodiazepines released during training and at the time of consolidation.  相似文献   

6.
Injection of GABA(A)/benzodiazepine receptor ligands into the medial septum (MS) alters the activity of cholinergic neurons that innervate the hippocampus and can produce bidirectional modulation of spatial memory. Recent evidence suggests that two subtypes of the GABA(A) receptor are differentially localized to either GABAergic (alpha(1)/beta(2)/gamma(2)) or cholinergic (alpha(3)/beta(3)/gamma(2)) neurons within the MS. The present studies characterized the dose-related behavioral and neurochemical effects of intraseptal infusions of two benzodiazepine (BDZ) agonists that appear to exhibit different profiles of pharmacological specificity for these receptor subtypes. Male Sprague-Dawley rats were cannulated and then artificial CSF, chlordiazepoxide (CDP: 8 or 12 microg), or zolpidem (4, 8, or 12 microg) was injected into the MS. Spatial working memory was assessed in a delay radial-arm maze task and the activity of cholinergic neurons in the MS was evaluated by high-affinity choline uptake (HA-ChU) in the hippocampus. Intraseptal injection of either CDP or zolpidem produced dose-related impairments in spatial working memory and decreases in hippocampal HAChU. Both BDZ agonists were found to produce retrograde memory deficits and a decrease in HAChU following the highest dose tested (12 microg). However, intraseptal injection of 8 microg of zolpidem produced a behavioral deficit comparable to the high dose of CDP, but did not alter HAChU within the HPC. Although the cholinergic component of the septohippocampal pathway has been shown to be important in modulating hippocampal physiology and spatial memory processes, data from the present experiments suggest that the GABAergic component may also play an important role in the behavioral functions of the septohippocampal pathway.  相似文献   

7.
Extensive evidence indicates that benzodiazepine receptors in the amygdala are involved in regulating memory consolidation. Recent findings indicate that many other drugs and hormones influence memory through selective activation of the basolateral amygdala nucleus (BLA). This experiment examined whether the memory-modulatory effect of flumazenil, a benzodiazepine receptor antagonist, selectively involves the BLA. Bilateral microinfusions of flumazenil (12 nmol in 0.2 microl) into the BLA of rats administered immediately after training in an inhibitory avoidance task significantly enhanced 48-h retention performance whereas infusions into the central nucleus were ineffective. These findings indicate that the BLA is selectively involved in mediating flumazenil's influence on memory storage and are thus consistent with extensive evidence indicating that the BLA is involved in regulating memory consolidation.  相似文献   

8.
The effects of the ACTH (4-10) analogue, ACTH (4-7)-Pro-Gly-Pro, and delta-sleep inducing peptide (DSIP) on the induction of Fos immunoreactivity in the hypothalamic parvocellular paraventricular nucleus (pPVN) and limbic brain regions were studied in Wistar rats with high (resistant) or low (predisposed) resistance to emotional stress, predicted from differences in their open-field behaviour. Fos-immunoreactive (Fos-IR) cells were counted in brain sections automatically with a computer-based image analyser. Under basal conditions, Fos-IR cell numbers were greater in the pPVN in the predisposed rats, but were lower than in the resistant rats in the basolateral amygdala and medial and lateral septum. Intraperitoneal DSIP injection (30 μg/kg) increased basal Fos-IR cell number in the pPVN and lateral septum in resistant rats, with no effects in predisposed rats. ACTH (4-10) analogue (50 μg/kg)increased Fos expression in the pPVN in both resistant and predisposed rats, with essentially no effects in the basolateral amygdala or medial and lateral septum. Emotional stress (60 min restraint and intermittent subcutaneous electrical shocks) increased Fos expression in the pPVN and medial and lateral septum similarly in predisposed and resistant rats, but in the basolateral amygdala in only the predisposed rats. Intraperitoneal DSIP injection reduced the increases in Fos-IR cell number after emotional stress, particularly in predisposed rats. In predisposed rats DSIP decreased the number of Fos-IR cells in the pPVN and the medial and lateral septum, with no change in the basolateral amygdala. In resistant rats, DSIP decreased Fos expression only in the lateral septum. ACTH (4-10) analogue injection inhibited stress-induced Fos expression in the pPVN and the medial septum, but only in predisposed rats. The experiments indicate that DSIP and ACTH (4-10) analogue reduce pPVN and limbic neurone responses to emotional stress in the rats predisposed to emotional stress; the effects on Fos expression may play a role in the biological activities of these peptides.  相似文献   

9.
We studied the capacity of post-training intracranial self-stimulation (SS) to reverse or ameliorate learning and memory impairments caused by amygdala damage in rats. A first experiment showed that lesions of the basolateral amygdala (BLA) slow down acquisition of two-way active avoidance conditioning (2wAA). In a second experiment we observed that a post-training SS treatment administered immediately after each 2wAA conditioning session is able to completely reverse the disruptive effects of the BLA lesions, and the facilitative effect lasts for 10 days. A third experiment allowed us to differentiate the strong recuperative effects of the SS treatment from the slight effect caused by overtraining the same conditioning response. We concluded that SS is able to counteract the behavioral deficit induced by BLA damage, probably by activating alternative undamaged brain structures related to learning and memory, such as the hippocampus.  相似文献   

10.
Rats selected as "anxious", "nonanxious," or normal according to their behavior in an elevated plus maze were submitted to memory tasks and the densities of central benzodiazepine receptors in the amygdala and the hippocampus were studied. Anxious rats exibited better retention scores in the inhibitory avoidance task while nonanxious rats exibited worse retention scores in inhibitory and two-way active avoidance tasks compared to normal rats. No significant differences were detected in the retention scores for habituation to an open field. Nonanxious rats presented a lower benzodiazepine receptor density in the hippocampus but not in the amygdala compared to the other groups. These data suggest that the benzodiazepine receptors are involved in the effect of "anxiety" or emotional states on memory storage processes.  相似文献   

11.
A recent studysuggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that mayhave damaged cerebellar Purkinje cells. The present studytested rats with highlyselective lesions of cholinergic neurons in all major areas of the basal forebrain on a spatial working memorytask in the radial arm maze. In postoperative testing, there were no significant differences between lesion and control groups in working memory, even with a delayperiod of 8 h, with the exception of a transient impairment during the first 2 d of postoperative testing at shorter delays (0 or 2 h). This finding corroborates other results that indicate that the cholinergic basal forebrain does not playa significant role in spatial working memory. Furthermore, it underscores the presence of intact memoryfunctions after cholinergic basal forebrain damage, despite attentional impairments that follow these lesions, demonstrated in other task paradigms.  相似文献   

12.
In rats, pretraining ip administration of the central benzodiazepine receptor antagonist, flumazenil (5.0 mg/kg), or of the inverse agonist, n-butyl-beta-carboline-3-carboxylate (BCCB) (0.2 or 0.5 mg/kg), facilitated retention of a step-down inhibitory avoidance task; the central agonists, clonazepam and diazepam (0.4 or 1.0 mg/kg), had an opposite effect, and the peripheral agonist, 4'-chlordiazepam (1.25 or 6.25 mg/kg), was without effect. Pre- but not post-training flumazenil (2.0 mg/kg) blocked the effect of BCCB (0.5 mg/kg), clonazepam (1.0 mg/kg), or diazepam (1.0 mg/kg) given also pretraining. The post-training administration of all of these drugs had no effect on retention of the avoidance task. Flumazenil (5.0 mg/kg) and BCCB (0.5 mg/kg), given before training, enhanced retention test performance of habituation to a buzzer but not of habituation to an open field. In the three tasks studied, none of the drugs used had any appreciable effect on training session parameters. These results suggest that there is an endogenous mechanism mediated by benzodiazepine agonists, sensitive to inverse agonists, that normally down-regulates acquisition of certain behaviors; this mechanism becomes activated only when the tasks involve or occur with a certain degree of stress or anxiety (i.e., inhibitory avoidance or habituation to the buzzer) and not in less stressful or anxiogenic tasks (i.e., habituation to an open field).  相似文献   

13.
Numerous studies have suggested that the amygdala is involved in the formation of aversive memories, but the possibility that this structure is merely related to any kind of fear sensation or response could not be ruled out in previous studies. The present study investigated the effects of bilateral inactivation of the amygdaloid complex in rats tested in the plus-maze discriminative avoidance task. This task concomitantly evaluates aversive memory (by discrimination of the two enclosed arms) and innate fear (by open-arm exploration). Wistar rats (3-5 months-old) were implanted with bilateral guide cannulae into basolateral amygdala. After surgery, all subjects were given 1 week to recover before behavioral experiments. Afterwards, in experiment 1, 15 min prior to training, 0.5 μl of saline or muscimol (1 mg/ml) was infused in each side via microinjection needles. In experiment 2 the animals received injections immediately after the training session and in experiment 3 rats were injected prior to testing session (24 h after training). The main results showed that (1) pre-training muscimol prevented memory retention (evaluated by aversive arm exploration in the test session), but did not alter innate fear (evaluated by percent time in open arms); (2) post-training muscimol impaired consolidation, inducing increased percent in aversive arm exploration in the test session and (3) pre-testing muscimol did not affect retrieval (evaluated by aversive enclosed arm exploration in the test session). The results suggest that amygdala inactivation specifically modulated the learning of the aversive task, excluding a possible secondary effect of amygdala inactivation on general fear responses. Additionally, our data corroborate the hypothesis that basolateral amygdala is not the specific site of storage of aversive memories, since retention of the previously learned task was not affected by pre-testing inactivation.  相似文献   

14.
15.
Recent evidence indicates that the amygdala plays a role in modulating memory processes in other brain regions. For example, posttraining intra-amygdala infusions of amphetamine enhanced memory in both spatial and cued training water maze tasks; these tasks are known to depend on the integrity of the hippocampus and caudate nucleus, respectively. To determine whether this modulation is dependent on noradrenergic activation within a subregion of the amygdala (the basolateral nucleus), the present study examined the effects of posttraining microinfusions (0.2 microl) of norepinephrine or propranolol into the basolateral amygdala immediately following training in a spatial version of the water maze task. Rats received a four-trial training session on each of 2 consecutive days. On the third day, rats were given a 60-s probe test in the absence of a platform. Retention latencies obtained on the second training day revealed that norepinephrine dose-dependently enhanced retention for the location of the hidden platform. In contrast, propranolol significantly impaired retention. Probe trial analysis revealed that rats treated with 0.25 microg norepinephrine demonstrated a selective spatial bias for the training platform location relative to all other groups. These findings are consistent with others and support the view that the basolateral amygdala has a role in modulating memory storage by interacting with other brain regions.  相似文献   

16.
Auditory fear conditioning requires anatomical projections from the medial geniculate nucleus (MGN) of the thalamus to the amygdala. Several lines of work indicate that the MGN is a critical sensory relay for auditory information during conditioning, but is not itself involved in the encoding of long-term fear memories. In the present experiments, we examined whether the MGN plays a similar role in the extinction of conditioned fear. Twenty-four hours after Pavlovian fear conditioning, rats received bilateral intra-thalamic infusions of either with NBQX (an AMPA receptor antagonist; Experiment 1) or MK-801 (an NMDA receptor antagonist; Experiment 1), anisomycin (a protein synthesis inhibitor; Experiment 2) or U0126 (a MEK inhibitor; Experiment 3) immediately prior to an extinction session in a novel context. The next day rats received a tone test in a drug-free state to assess their extinction memory; freezing served as an index of fear. Glutamate receptor antagonism prevented both the expression and extinction of conditioned fear. In contrast, neither anisomycin nor U0126 affected extinction. These results suggest that the MGN is a critical sensory relay for auditory information during extinction training, but is not itself a site of plasticity underlying the formation of the extinction memory.  相似文献   

17.
Evidence collected from rodent models of memory storage suggests that rapid forms of learning engage the involvement of multiple brain regions each of which may participate in a different component of information processing. The present study used temporary inactivation of the amygdala and hippocampus during different phases of information processing on a one-trial appetitive-conditioning task to examine how these two regions might participate in the storage of appetitive memories. Male Long Evans rats were chronically implanted into the amygdala or dorsal hippocampus and food deprived. Rats were trained on a radial maze conditioned cue preference task where training occurred in one 40-min session and testing took place 24 h later. The amygdala or hippocampus was inactivated separately with muscimol (50 ng/microl) injected immediately before or after training, or immediately before testing. Saline-injected rats displayed a conditioned preference by spending more time in the arm that previously contained food than in the arm that did not contain food. Muscimol injected into the amygdala before training or testing blocked the conditioned preference. Muscimol injected into the hippocampus immediately after training blocked the conditioned preference. These results suggest that the processing of memories may require multiple contributions from separate brain systems for at least short-term (24 h) storage. The resulting output from each system may converge on a similar downstream target to influence behavior.  相似文献   

18.
Rats were trained on an eight-arm radial maze task using a procedure that provides for an assessment of both working and reference memory. Following training, rats received parietal cortex, medial prefrontal cortex, visual cortex, or nucleus basalis magnocellularis lesions. Rats with visual cortex lesions showed no change in performance on either working or reference memory. Rats with parietal cortex lesions displayed a temporary deficit in reference, but no deficit on working memory. Animals with medial prefrontal cortex lesions showed a temporary deficit on both working and reference memory. Rats with extensive lateral frontal and parietal cortex depletion of acetylcholinesterase following nucleus basalis magnocellularis lesions had a marked disruption only of reference but not of working memory. It is concluded that neocortex and possibly the cholinergic projections to neocortex play an important role in mediating reference memory.  相似文献   

19.
Recent evidence indicates that certain forms of memory, upon recall, may return to a labile state requiring the synthesis of new proteins in order to preserve or reconsolidate the original memory trace. While the initial consolidation of "instrumental memories" has been shown to require de novo protein synthesis in the nucleus accumbens, it is not known whether memories of this type undergo protein synthesis-dependent reconsolidation. Here we show that low doses of the protein synthesis inhibitor anisomycin (ANI; 5 or 20 mg/kg) administered systemically in rats immediately after recall of a lever-pressing task potently impaired performance on the following daily test sessions. We determined that the nature of this impairment was attributable to conditioned taste aversion (CTA) to the sugar reinforcer used in the task rather than to mnemonic or motoric impairments. However, by substituting a novel flavored reinforcer (chocolate pellets) prior to the administration of doses of ANI (150 or 210 mg/kg) previously shown to cause amnesia, a strong CTA to chocolate was induced sparing any aversion to sugar. Importantly, when sugar was reintroduced on the following session, we found that memory for the task was not significantly affected by ANI. Thus, these data suggest that memory for a well-learned instrumental response does not require protein synthesis-dependent reconsolidation as a means of long-term maintenance.  相似文献   

20.
We examined neuronal correlates of forgetting in rats by detection of phosphorylated mitogen-activated protein kinase (pMAPK) in the medial prefrontal cortex (mPFC) and amygdala. In Experiment 1, postnatal day (P)23 and P16 rats received paired noise CS-shock US presentations. When tested immediately after conditioning, P23 and P16 rats exhibited similar levels of conditioned fear; when tested after 2 days, however, P16 rats showed poor CS-elicited freezing relative to P23 rats. In Experiment 2, P16 and P23 rats received either paired or unpaired CS-US presentations, and then were tested 48 h later. Consistent with Experiment 1, P16 rats showed forgetting whereas P23 rats exhibited good retention at test. Additionally, unpaired groups showed poor CS-elicited freezing at test. Immunohistochemistry showed that P23 and P16 rats given paired presentations exhibited significant elevation of pMAPK-immunoreactive (ir) neurons in the amygdala compared to rats given unpaired presentations. That is, MAPK phosphorylation in the amygdala tracked learning history rather than behavioral performance at test. In contrast, only the P23-paired group showed an elevated number of pMAPK-ir neurons in mPFC, indicating that MAPK phosphorylation in the mPFC tracks memory expression. Different test-perfusion intervals were employed in Experiment 3, which showed that the developmental dissociation in the pMAPK-ir neurons observed in the mPFC in Experiment 2 was not due to age differences in the rate of phosphorylation of MAPK. These findings provide initial evidence suggesting that while the mPFC is involved in memory retrieval, MAPK phosphorylation in the amygdala may be a persisting neural signature of fear memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号