首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rodent models of motor skill learning include skilled forelimb reaching and acrobatic locomotor paradigms. This study characterizes motor skill learning in the accelerated rotarod task. Thirty Long-Evans rats (300-400 g) were trained on an accelerated rotarod (1cm/s(2)) over eight consecutive sessions (=days, 20 trials each). Improvement in rotarod velocities mastered before falling off the rod was observed within and between sessions (plateau after five sessions). Intrasession improvement was incompletely retained at the beginning of the next day's session. Over several training sessions, intrasession improvement diminished, suggesting a ceiling effect. After 1 week of pause, the rotarod skill was retained. Locomotor exercise in a running wheel for 30 min before the first rotarod session did not affect intrasession improvement. Running-wheel exposure for 6 days did not diminish the rate of rotarod skill learning (steepness of the learning curve) but improved overall performance (upward shift of curve). Video analysis of gait on the rotarod showed that rats developed a motor strategy by modifying their gait patterns during training. The data demonstrate that rotarod improvement is not the result of enhanced general locomotor ability or fitness, which are trained in the running wheel, but requires a change in the motor strategy to master the task. Accelerated rotarod training can be regarded a valid paradigm for motor skill learning over short (intrasession, minutes) and long time frames (intersession, days).  相似文献   

2.
Fear conditioning is a form of associative learning in which subjects come to express defense responses to a neutral conditioned stimulus (CS) that is paired with an aversive unconditioned stimulus (US). Considerable evidence suggests that critical neural changes mediating the CS-US association occur in the lateral nucleus of the amygdala (LA). Further, recent studies show that associative long-term potentiation (LTP) occurs in pathways that transmit the CS to LA, and that drugs that interfere with this LTP also disrupt behavioral fear conditioning when infused into the LA, suggesting that associative LTP in LA might be a mechanism for storing memories of the CS-US association. Here, we develop a detailed cellular hypothesis to explain how neural responses to the CS and US in LA could induce LTP-like changes that store memories during fear conditioning. Specifically, we propose that the CS evokes EPSPs at sensory input synapses onto LA pyramidal neurons, and that the US strongly depolarizes these same LA neurons. This depolarization, in turn, causes calcium influx through NMDA receptors (NMDARs) and also causes the LA neuron to fire action potentials. The action potentials then back-propagate into the dendrites, where they collide with CS-evoked EPSPs, resulting in calcium entry through voltage-gated calcium channels (VGCCs). Although calcium entry through NMDARs is sufficient to induce synaptic changes that support short-term fear memory, calcium entry through both NMDARs and VGCCs is required to initiate the molecular processes that consolidate synaptic changes into a long-term memory.  相似文献   

3.
Current evidence indicates that repetitive motor behavior during motor learning paradigms can produce changes in representational organization in motor cortex. In a previous study, we trained adult squirrel monkeys on a repetitive motor task that required the retrieval of food pellets from a small-diameter well. It was found that training produced consistent task-related changes in movement representations in primary motor cortex (M1) in conjunction with the acquisition of a new motor skill. In the present study, we trained adult squirrel monkeys on a similar motor task that required pellet retrievals from a much larger diameter well. This large-well retrieval task was designed to produce repetitive use of a limited set of distal forelimb movements in the absence of motor skill acquisition. Motor activity levels, estimated by the total number of finger flexions performed during training, were matched between the two training groups. This experiment was intended to evaluate whether simple, repetitive motor activity alone is sufficient to produce representational plasticity in cortical motor maps. Detailed analysis of the motor behavior of the monkeys indicates that their retrieval behavior was highly successful and stereotypical throughout the training period, suggesting that no new motor skills were learned during the performance of the large-well retrieval task. Comparisons between pretraining and posttraining maps of M1 movement representations revealed no task-related changes in the cortical area devoted to individual distal forelimb movement representations. We conclude that repetitive motor activity alone does not produce functional reorganization of cortical maps. Instead, we propose that motor skill acquisition, or motor learning, is a prerequisite factor in driving representational plasticity in M1.  相似文献   

4.
The dentate gyrus (DG) is among the few areas in the mammalian brain where production of new neurons continues in the adulthood. Although its functional significance is not completely understood, several lines of evidence suggest the role of DG neurogenesis in learning and memory. Considering that long-term potentiation (LTP) is a prime candidate for the process underlying hippocampal learning and memory, these results raise the possibility that LTP and neurogenesis are closely related. Here, we investigated whether or not LTP induction in the afferent pathway triggers enhanced proliferation of progenitor cells in the DG. LTP was induced by tetanic stimulation in perforant path-DG synapses in one hemisphere, and the number of newly generated progenitor (BrdU-labeled) cells in the DG was quantified. Compared with the control hemisphere (stimulated with low-frequency pulses), the LTP-induced hemisphere contained a significantly higher number of newly generated progenitor cells in the dorsal as well as ventral DG. When CPP, an NMDA receptor antagonist, was administered, tetanic stimulation neither induced LTP nor enhanced progenitor cell proliferation, indicating that NMDA receptor activation, rather than tetanic stimulation per se, is responsible for enhanced progenitor proliferation in the control animal. Our results show that tetanic stimulation of perforant path sufficient to induce LTP increases progenitor proliferation in adult DG in an NMDA receptor-dependent manner.  相似文献   

5.
This study investigated, in the field, differences in the transfer and retention of training in using micrometers, of two groups of young trainees. The experimental group were motor-vehicle servicing trainees and the control group were information technology trainees. The results showed that (i) there was no difference between trainees of the two groups in end-of-training tests when they were trained from scratch, though the information technology trainees retained the skill better; (ii) experimental subjects, who had learned the micrometer skill one year previously, were more effectively trained to use it in a new trade than were control subjects, who lacked previous experience; (iii) experimental subjects, who had learned the micrometer skill one year previously, were not more effectively trained to use a vernier height-gauge. Results are discussed in terms of the level of skill at which a possible transfer mechanism may be supposed to operate. Evidence is presented of effective transfer of training between two skills very closely related at the motor level. Failure of transfer of training between two skills related at a somewhat higher level of abstraction is shown. The question of transfer of training between two skills not closely related at these lower levels, but related at a yet higher level of abstraction, is discussed.  相似文献   

6.
Consolidation of nondeclarative memory is widely believed to benefit from sleep. However, evidence is mainly limited to tasks involving rote learning of the same stimulus or behavior, and recent findings have questioned the extent of sleep-dependent consolidation. We demonstrate consolidation during sleep for a multimodal sensorimotor skill that was trained and tested in different visual-spatial virtual environments. Participants performed a task requiring the production of novel motor responses in coordination with continuously changing audio-visual stimuli. Performance improved with training, decreased following waking retention, but recovered and stabilized following sleep. These results extend the domain of sleep-dependent consolidation to more complex, adaptive behaviors.  相似文献   

7.
8.
This study was designed to examine the effect of corticosterone on consolidation of contextual fear memory and hippocampal long-term potentiation (LTP) in rats. In Experiment 1, dose–response effects of corticosterone on consolidation of contextual fear memory were determined. Immediately after training in contextual fear conditioning task, rats received different doses of corticosterone. Testing 24 h later, it revealed that corticosterone enhanced memory consolidation in an inverted U shape as evidenced in increased freezing behavior of corticosterone-treated animals. The most effective dose was 3 mg/kg. In Experiment 2, LTP was examined in rats whose memory consolidation has been enhanced with corticosterone. The rats were trained as the above and received corticosterone (3 mg/kg) immediately after training. Immediately or up to one day after retention test, rats were anesthetized with urethane for LTP experiments. For LTP induction, three episodes of high frequency stimuli, 30 s apart, were delivered to the perforant path, each consisting of 10 stimuli at 250 Hz. LTP was assessed by measuring the increase in the initial slope of the population excitatory post-synaptic potentials and the amplitude of the population spikes. Data indicated that animals whose memory has been enhanced by corticosterone, also displayed enhanced hippocampal LTP. The above findings suggest that glucocorticoids may enhance contextual fear memory consolidation via enhancing hippocampal LTP.  相似文献   

9.
Previous studies have found that differences in brain volume among older adults predict performance in laboratory tasks of executive control, memory, and motor learning. In the present study we asked whether regional differences in brain volume as assessed by the application of a voxel-based morphometry technique on high resolution MRI would also be useful in predicting the acquisition of skill in complex tasks, such as strategy-based video games. Twenty older adults were trained for over 20 h to play Rise of Nations, a complex real-time strategy game. These adults showed substantial improvements over the training period in game performance. MRI scans obtained prior to training revealed that the volume of a number of brain regions, which have been previously associated with subsets of the trained skills, predicted a substantial amount of variance in learning on the complex game. Thus, regional differences in brain volume can predict learning in complex tasks that entail the use of a variety of perceptual, cognitive and motor processes.  相似文献   

10.
The present study investigated the role of temperature as a contextual condition for motor skill learning. Precision grip task training occurred while forearm cutaneous temperature was either heated (40-45 °C) or cooled (10-15 °C). At test, temperature was either reinstated or changed. Performance was comparable between training conditions while at test, temperature changes decreased accuracy, especially after hot training conditions. After cold training, temperature change deficits were only evident when concurrent force feedback was presented. These findings are the first evidence of localized temperature dependency in motor skill learning in humans. Results are not entirely accounted for by a context-dependent memory explanation and appear to represent an interaction of neuromuscular and sensory processes with the temperature present during training and test.  相似文献   

11.
Rats were trained in four different learning tasks including the Morris-water task, a T-maze delayed nonmatch-to-sample task, a skilled unilateral reaching task, and a skilled bilateral string-pulling task. At the end of training the brains were harvested and stained using a Golgi-Cox procedure. Learning the spatial navigation task produced increased dendritic length and branching as well as decreased spine density in layer III pyramidal cells in occipital cortex. Learning the T-maze task increased dendritic branching in layer III medial but not orbital frontal cortex pyramidal cells and increased spine density in both regions. The motor learning tasks produced increased dendritic length and branching in layer V pyramidal cells in the forelimb cortex in the hemisphere contralateral to the trained limb in the unilateral skilled reaching task and in both limbs in the bilateral skilled pulling task. There were no changes in spine density in layer V in the motor tasks, but there was a decrease in spine density in layer III in the unilateral reaching task. Spatial and motor learning thus produce different patterns of change in layer III cortical pyramidal neurons. Furthermore, changes in spine density and dendritic length and branching are not tightly correlated and can increase and/or decrease independently of one another in learning tasks.  相似文献   

12.
Previous research has indicated a role for both the neuronal (nNOS) and endothelial (eNOS) nitric oxide isoforms in memory formation. In addition, two distinct periods of activity of nitric oxide activity, dissociated by hemispheric localization, are implicated following passive avoidance training in the chick. In the present study, we trained black Australorp-white Leghorn chicks on a color discrimination avoidance task. Diphenyleneiodonium chloride (1 microM) or N-propyl-l-arginine (50 microM) was administered into either the left or right hemisphere of the chick brain in an attempt to differentiate the effects of inhibiting eNOS or nNOS, respectively. The memory loss previously observed following administration of diphenyleneiodonium chloride between 10 and 20 min posttraining was found to be lateralized to the right hemisphere, although administration of this agent into the left hemisphere around the time of training was also amnestic. In contrast, N-propyl-l-arginine caused memory loss only when administered to the left hemisphere around the time of training. These findings suggest that activation of both eNOS and nNOS isoforms may be essential for long-term memory consolidation of this task. Further, these two periods of activity are defined temporally and by hemisphere localization, although confirmation with more selective inhibitors when they become available is advised.  相似文献   

13.
We have measured depolarization-induced release of endogenous glutamate in synaptosomes prepared from the dentate gyrus after the induction of LTP by high-frequency stimulation in anesthetized rats, and after training in the water maze. Both spatial training and LTP in untrained rats were accompanied by an increase in glutamate release from dentate synaptosomes. The enhancement of synaptosomal glutamate release induced by high-frequency stimulation was abolished in well-trained rats, and was reduced in partially trained rats and in rats trained in a nonspatial task. However, the magnitude of LTP was similar in well-trained and untrained groups. These results indicate that spatial training activates a glutamate release pathway that converges with that activated in LTP, and demonstrate an unexpected dissociation between increased glutamate release and LTP.  相似文献   

14.
Are children better than adults in acquiring new skills (‘how‐to’ knowledge) because of a difference in skill memory consolidation? Here we tested the proposal that, as opposed to adults, children's memories for newly acquired skills are immune to interference by subsequent experience. The establishment of long‐term memory for a trained movement sequence in adults requires a phase of memory consolidation. This results in substantial delayed, ‘offline’, performance gains, which nevertheless remain susceptible to interference by subsequent competing motor experience for several hours after training, unless sleep is afforded in the interval. Here we compared the gains attained overnight (delayed gains) by 9‐year‐olds and adults after training on a novel finger‐to‐thumb movement sequence, with and without subsequent interference by repeating a different movement sequence. Our results show that, in 9‐year‐olds, but not in adults, an interval of 15 min. between the training session and interfering experience sufficed to ensure the expression of delayed, consolidation phase, gains. Nevertheless, in the 9‐year‐olds, as well as in adults, the gains attained with no interference were significantly larger. Altogether, our results show that while the behavioral expressions of childhood and adult consolidation processes are similar, procedural memory stabilizes, in the waking state, at a much faster rate in children. We propose that, in children, rapid stabilization is a mechanism whereby the constraints on consolidating new experiences into long‐term procedural memory are relaxed at the cost of selectivity.  相似文献   

15.
Sleep-dependent memory consolidation is observed following motor skill learning: Performance improvements are greater over a 12-h period containing sleep relative to an equivalent interval without sleep. Here we examined whether older adults exhibit sleep-dependent consolidation on a sequence learning task. Participants were trained on one of two sequence learning tasks. Performance was assessed after a 12-h break that included sleep and after a 12-h break that did not include sleep. Older and younger adults showed similar degrees of initial learning. However, performance of the older adults did not improve following sleep, providing evidence that sleep-dependent consolidation is diminished with age.  相似文献   

16.
Sleep is considered to support the formation of skill memory. In juvenile but not adult song birds learning a tutor's song, a stronger initial deterioration of song performance over night‐sleep predicts better song performance in the long run. This and similar observations have stimulated the view of sleep supporting skill formation during development in an unsupervised off‐line learning process that, in the absence of external feedback, can initially also enhance inaccuracies in skill performance. Here we explored whether in children learning a motor sequence task, as in song‐learning juvenile birds, changes across sleep after initial practice predict performance levels achieved in the long run. The task was a serial reaction time task (SRTT) where subjects had to press buttons which were lighted up in a repeating eight‐element sequence as fast as possible. Twenty‐five children (8–12 years) practised the task in the evening before nocturnal sleep which was recorded polysomnographically. Retrieval was tested on the following morning and again 1 week later after daily training on the SRTT. As expected, changes in response speed over the initial night of sleep were negatively correlated with final performance speed after the 1‐week training. However, unlike in song birds, this correlation was driven by the baseline speed level achieved before sleep. Baseline‐corrected changes in speed or variability over the initial sleep period did not predict final performance on the trained SRTT sequence, or on different sequences introduced to assess generalization of the trained behaviour. The lack of correlation between initial sleep‐dependent changes and long‐term performance might reflect that the children were too experienced for the simple SRTT, possibly also favouring ceiling effects in performance. A consistent association found between sleep spindle activity and explicit sequence knowledge alternatively suggests that the expected correlation was masked by explicit memory systems interacting with skill memory formation.  相似文献   

17.
Long-term potentiation (LTP) and depression (LTD) are considered as cellular models for learning and memory. We studied the impact of holeboard training on LTP in the rat CA1 hippocampal region. In 7-week-old Wistar rats a recording electrode was chronically implanted into the hippocampal pyramidal cell layer of the CA1 of the right hemisphere and a stimulation electrode into the contralateral CA3 region.Two groups of animals received a spatial holeboard training of 10 or 15 trials over 2 days on a fixed pattern of baited holes. The last trial was performed 15 min after a primed burst stimulation of the contralateral CA3, which resulted in LTP in the ipsilateral CA1. A pseudo-trained group that received a 10 trial training with changing patterns of baited holes after each trial and a group that remained in the recording chambers during the experiments served as controls. Experimental rats significantly improved their spatial performance with increasing numbers of trials, indicated by decreasing times to pick up all food pellets and by decreasing numbers of reference memory errors. A learning-related impairment of CA1-LTP measured in both the population-spike amplitude as well as the fEPSP could be noted. These results show that specific (pattern-training), but not unspecific (pseudo-training) spatial information processing prior to electrical stimulation can severely affect LTP in hippocampal area CA1.  相似文献   

18.
The ability of neurons to modify their synaptic strength in an activity-dependent manner has a crucial role in learning and memory processes. It has been proposed that homeostatic forms of plasticity might provide the global regulation necessary to maintain synaptic strength and plasticity within a functional dynamic range. Similarly, it is considered that the capacity of synapses to express plastic changes is itself subject to variation dependent on previous experience. In particular, training in several behavioral tasks modifies the possibility to induce long-term potentiation (LTP). Our previous studies in the insular cortex (IC) have shown that induction of LTP in the basolateral amygdaloid nucleus (Bla)-IC projection previous to conditioned taste aversion (CTA) training enhances the retention of this task. The aim of the present study was to analyze whether CTA training modifies the ability to induce subsequent LTP in the Bla-IC projection in vivo. Thus, CTA trained rats received high frequency stimulation in the Bla-IC projection in order to induce LTP 48, 72, 96 and 120 h after the aversion test. Our results show that CTA training prevents the subsequent induction of LTP in the Bla-IC projection, for at least 120 h after CTA training. We also showed that pharmacological inhibition of CTA consolidation with anisomycin (1 μl/side; 100 μg/μl) prevents the CTA effect on IC-LTP. These findings reveal that CTA training produces a persistent change in the ability to induce subsequent LTP in the Bla-IC projection in a protein-synthesis dependent manner, suggesting that changes in the ability to induce subsequent synaptic plasticity contribute to the formation and persistence of aversive memories.  相似文献   

19.
鸟类神经系统的长时程增强   总被引:3,自引:0,他引:3  
揭示学习与记忆的神经机制已成为认知科学领域的一个重要研究方向。研究过程中需根据不同实验目的选用不同实验动物。LTP(long-term potentiation)是一种研究学习记忆突触基础的主要模型,其代表突触功能的可塑性。以往对LTP的研究主要集中于哺乳动物,但由于鸟类在生物进化上具有独特的地位及特有的学习记忆能力,因此通过某些鸟类行为模型将有利于对LTP特性及其与学习记忆相关性进行更深入的探索。  相似文献   

20.
In striking contrast to adults, in children sleep following training a motor task did not induce the expected (offline) gain in motor skill performance in previous studies. Children normally perform at distinctly lower levels than adults. Moreover, evidence in adults suggests that sleep dependent offline gains in skill essentially depend on the pre-sleep level of performance. Against this background, we asked whether improving children's performance on a motor sequence learning task by extended training to levels approaching those of adults would enable sleep-associated gains in motor skill in this age group also. Children (4-6 years) and adults (18-35 years) performed on the motor sequence learning task (button-box task) before and after ~2-hour retention intervals including either sleep (midday nap) or wakefulness. Whereas one group of children and adults, respectively, received the standard amount of 10 blocks of training before retention intervals of sleep or wakefulness, a further group of children received an extended training on 30 blocks (distributed across 3 days). A further group of adults received a restricted training on only two blocks before the retention intervals. Children after standard training reached lowest performance levels, whereas in adults performance after standard training was highest. Children with extended training and adults after reduced training reached intermediate performance levels. Only at these intermediate performance levels did sleep induce significant gains in motor sequence skill, whereas performance did not benefit from sleep in the low-performing children or in the high-performing adults. Spindle counts in the post-training nap were correlated with performance gains at retrieval only in the adults benefitting from sleep. We conclude that, across age groups, sleep induces the most robust gain in motor skill at an intermediate pre-sleep performance level. In low-performing children sleep-dependent improvements in skill may be revealed only after enhancing the pre-sleep performance level by extended training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号