首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A system for nonverbally representing the approximate number of items in visual and auditory arrays has been documented in multiple species, including humans. Although many aspects of this approximate number system are well characterized, fundamental questions remain unanswered: how does attention select which items in a scene to enumerate, and how many enumerations can be computed simultaneously? Here we show that when presented an array containing different numbers of spatially overlapping dots of many colors, human adults can select and enumerate items on the basis of shared color and can enumerate approximately three color subsets from a single glance. This three-set limit converges with previously observed three-item limits of parallel attention and visual short-term memory. This suggests that participants can select a subset of items from a complex array as a single individual set, which then serves as the input to the approximate number system.  相似文献   

2.
Three experiments involving a Stroop-like paradigm were conducted. In Experiment 1, adults received a number comparison task in which large sets of dots, orthogonally varying along a discrete dimension (number of dots) and a continuous dimension (cumulative area), were presented. Incongruent trials were processed more slowly and with less accuracy than congruent trials, suggesting that continuous dimensions such as cumulative area are automatically processed and integrated during a discrete quantity judgement task. Experiment 2, in which adults were asked to perform area comparison on the same stimuli, revealed the reciprocal interference from number on the continuous quantity judgements. Experiment 3, in which participants received both the number and area comparison tasks, confirmed the results of Experiments 1 and 2. Contrasting with earlier statements, the results support the view that number acts as a more salient cue than continuous dimensions in adults. Furthermore, the individual predisposition to automatically access approximate number representations was found to correlate significantly with adults' exact arithmetical skills.  相似文献   

3.
Although working memory has a highly constrained capacity limit of three or four items, both adults and toddlers can increase the total amount of stored information by "chunking" object representations in memory. To examine the developmental origins of chunking, we used a violation-of-expectation procedure to ask whether 7-month-old infants, whose working memory capacity is still maturing, also can chunk items in memory. In Experiment 1, we found that in the absence of chunking cues, infants failed to remember three identical hidden objects. In Experiments 2 and 3, we found that infants successfully remembered three hidden objects when provided with overlapping spatial and featural chunking cues. In Experiment 4, we found that infants did not chunk when provided with either spatial or featural chunking cues alone. Finally, in Experiment 5, we found that infants also failed to chunk when spatial and featural cues specified different chunks (i.e., were pitted against each other). Taken together, these results suggest that chunking is available before working memory capacity has matured but still may undergo important development over the first year of life.  相似文献   

4.
The process by which adults develop competence in symbolic mathematics tasks is poorly understood. Nonhuman animals, human infants, and human adults all form nonverbal representations of the approximate numerosity of arrays of dots and are capable of using these representations to perform basic mathematical operations. Several researchers have speculated that individual differences in the acuity of such nonverbal number representations provide the basis for individual differences in symbolic mathematical competence. Specifically, prior research has found that 14-year-old children’s ability to rapidly compare the numerosities of two sets of colored dots is correlated with their mathematics achievements at ages 5–11. In the present study, we demonstrated that although when measured concurrently the same relationship holds in children, it does not hold in adults. We conclude that the association between nonverbal number acuity and mathematics achievement changes with age and that nonverbal number representations do not hold the key to explaining the wide variety of mathematical performance levels in adults.  相似文献   

5.
Three experiments involving a Stroop-like paradigm were conducted. In Experiment 1, adults received a number comparison task in which large sets of dots, orthogonally varying along a discrete dimension (number of dots) and a continuous dimension (cumulative area), were presented. Incongruent trials were processed more slowly and with less accuracy than congruent trials, suggesting that continuous dimensions such as cumulative area are automatically processed and integrated during a discrete quantity judgement task. Experiment 2, in which adults were asked to perform area comparison on the same stimuli, revealed the reciprocal interference from number on the continuous quantity judgements. Experiment 3, in which participants received both the number and area comparison tasks, confirmed the results of Experiments 1 and 2. Contrasting with earlier statements, the results support the view that number acts as a more salient cue than continuous dimensions in adults. Furthermore, the individual predisposition to automatically access approximate number representations was found to correlate significantly with adults' exact arithmetical skills.  相似文献   

6.
张引  梁腾飞  叶超雄  刘强 《心理学报》2020,52(5):562-571
本研究通过两个实验探讨了长时记忆联结表征如何影响当下工作记忆任务的加工。长时记忆联结表征采用无语义联系、无视觉相似性的Emoji图片对, 提前一天让被试完成联结表征的建立, 正式工作记忆任务采用独立探测的变化觉察范式。实验1控制呈现时间(500 ms / 1000 ms)与呈现方式(联结/独立), 发现两种呈现时间均显示出联结条件的正确率与记忆容量显著低于独立条件, 说明长时记忆联结表征抑制了当前工作记忆的加工。实验2设置了记忆项目数(2/4/6项)与呈现方式(联结/独立), 采用alpha震荡作为脑电指标, 考察长时联结表征在工作记忆维持阶段的作用。结果发现在维持阶段, 独立条件的alpha震荡随着记忆项目数量的增加而增大(2项 < 4项 < 6项), 而联结条件在4项已经到达顶点(2项 < 4项 = 6项)。实验2进一步说明长时联结表征在维持阶段降低了当前工作记忆容量。本研究的两个实验结果表明, 长时记忆联结表征对当前的工作记忆任务有一定的抑制作用, 这种抑制作用产生的机制可能来自于联结表征干扰了维持阶段的注意分配。  相似文献   

7.
Throughout development, working memory is subject to capacity limits that severely constrain short‐term storage. However, adults can massively expand the total amount of remembered information by grouping items into chunks. Although infants also have been shown to chunk objects in memory, little is known regarding the limits of this ability. In particular, it remains unknown whether infants can create more complex memory hierarchies, binding representations of chunks into still larger chunks in recursive fashion. Here we tested the limits of early chunking, first measuring the number of items infants can bind into a single chunk and the number of chunks infants can maintain concurrently, and then, critically, whether infants can embed chunked representations into larger units. We tested 14‐month‐old infants' memory for hidden objects using a manual search task in which we manipulated memory load (the number of objects infants saw hidden) and the chunking cues provided. We found that infants are limited in the number of items they can chunk and in the number of chunks they can remember. However, we also found that infants can bind representations of chunks into ‘superchunks’. These results suggest that hierarchically organizing information strongly affects working memory, starting in infancy.  相似文献   

8.
Zhang W  Luck SJ 《Psychological science》2011,22(11):1434-1441
Flexible-resource theories characterize working memory as a flexible resource that can store either a large number of low-quality representations or a small number of high-quality representations. In contrast, limited-item theories propose that the number of items that can be stored in working memory is strictly limited and cannot be increased by decreasing the quality of the representations. We tested these fundamentally different conceptualizations of working memory capacity by determining whether observers could trade quality for quantity in working memory when given incentives to do so. We found no evidence that observers could increase the number of representations by decreasing their quality in working memory, but observers could make such a trade-off at earlier processing stages. Our results show that the capacity limit of working memory is best characterized as a limit on the number of items that can be stored and not as a limit on a finely divisible resource that simultaneously determines the number and quality of the representations.  相似文献   

9.
Two experiments examined the hypothesis that developing visual attentional mechanisms influence infants' Visual Short-Term Memory (VSTM) in the context of multiple items. Five- and 10-month-old infants (N = 76) received a change detection task in which arrays of three differently colored squares appeared and disappeared. On each trial one square changed color and one square was cued; sometimes the cued item was the changing item, and sometimes the changing item was not the cued item. Ten-month-old infants exhibited enhanced memory for the cued item when the cue was a spatial pre-cue (Experiment 1) and 5-month-old infants exhibited enhanced memory for the cued item when the cue was relative motion (Experiment 2). These results demonstrate for the first time that infants younger than 6 months can encode information in VSTM about individual items in multiple-object arrays, and that attention-directing cues influence both perceptual and VSTM encoding of stimuli in infants as in adults.  相似文献   

10.
Observers can store thousands of object images in visual long-term memory with high fidelity, but the fidelity of scene representations in long-term memory is not known. Here, we probed scene-representation fidelity by varying the number of studied exemplars in different scene categories and testing memory using exemplar-level foils. Observers viewed thousands of scenes over 5.5 hr and then completed a series of forced-choice tests. Memory performance was high, even with up to 64 scenes from the same category in memory. Moreover, there was only a 2% decrease in accuracy for each doubling of the number of studied scene exemplars. Surprisingly, this degree of categorical interference was similar to the degree previously demonstrated for object memory. Thus, although scenes have often been defined as a superset of objects, our results suggest that scenes and objects may be entities at a similar level of abstraction in visual long-term memory.  相似文献   

11.
采用注意捕获范式, 通过行为和事件相关脑电位(ERP)实验, 探讨工作记忆表征精度加工需求对注意引导的影响, 行为结果发现, 在低精度加工需求条件下, 只有一个工作记忆表征引导注意, 且处于高激活状态的工作记忆表征产生的注意捕获大于低激活状态; 而在高精度加工需求条件下, 有两个工作记忆表征引导注意, 且处于高、低激活状态的工作记忆表征产生的注意捕获没有差异。ERP结果显示, 高精度加工需求条件下诱发的NSW和LPC大于低精度加工需求条件; 在高精度加工需求条件下, 干扰项与记忆项匹配比不匹配时, 诱发更大的N2和更小的N2pc, 而在低精度加工需求条件下, 干扰项与记忆项匹配和不匹配时诱发的N2、N2pc没有差异。研究表明, 工作记忆表征精度加工需求影响注意引导的机制可能是高精度加工需求下, 工作记忆表征消耗的认知资源增加, 搜索目标获得的资源减少, 干扰项捕获的注意增加。  相似文献   

12.
Language and number: a bilingual training study   总被引:8,自引:0,他引:8  
Spelke ES  Tsivkin S 《Cognition》2001,78(1):45-88
Three experiments investigated the role of a specific language in human representations of number. Russian-English bilingual college students were taught new numerical operations (Experiment 1), new arithmetic equations (Experiments 1 and 2), or new geographical or historical facts involving numerical or non-numerical information (Experiment 3). After learning a set of items in each of their two languages, subjects were tested for knowledge of those items, and new items, in both languages. In all the studies, subjects retrieved information about exact numbers more effectively in the language of training, and they solved trained problems more effectively than untrained problems. In contrast, subjects retrieved information about approximate numbers and non-numerical facts with equal efficiency in their two languages, and their training on approximate number facts generalized to new facts of the same type. These findings suggest that a specific, natural language contributes to the representation of large, exact numbers but not to the approximate number representations that humans share with other mammals. Language appears to play a role in learning about exact numbers in a variety of contexts, a finding with implications for practice in bilingual education. The findings prompt more general speculations about the role of language in the development of specifically human cognitive abilities.  相似文献   

13.
We examined the order effect in item-recognition response time, that is, differences in response time for multiple-item probes containing items in the same or in the reverse order as those in the memory set. Experiment 1 used the response condition in which only one item must be positive for a positive response, Experiment 2 used homogeneous probes in which all the items are either positive or negative, and Experiment 3 used the condition in which all the items must be positive. Of particular interest were the serial position variations in order effects for probes containing items that were adjacent in the memory set. We previously found that such effects are an indication of subjective grouping of the memory set and the matching of the probe with these subgroups. The order effect in the one-positive condition was only weak in most cases, but it was strong with homogeneous probes when the memory set was objectively grouped or was ungrouped but with a constant set size. There were also strong order effects in the all-positive condition for probes with items that were nonadjacent in the memory set. Our results are interpreted in terms of a parallel match process based on a distribution over position of items in subjective or objective groups. We account for the origin of the distribution-over-position process in terms of multiple representations of the grouped memory sets. The model assumes that each subgroup is represented in memory several, and perhaps very many, times and that considerable error in item positioning can occur over the multiple representations of any group.  相似文献   

14.
15.
Two studies compared young and older adults' memory for location information after brief intervals. Experiment 1 found that accuracy of intentional spatial memory for individual locations was similar in young and older participants for set sizes of 3 and 6. Both groups also encoded individual locations in relation to the larger configuration of locations. Experiment 2 showed that like young adults, older adults' latency to respond to a test probe in a letter working memory task was negatively influenced by spatial information that was irrelevant to the task. This interference effect indicated preserved incidental memory for spatial information in older adults. Together, these data suggest that initial encoding of spatial information for relatively small numbers of items is largely preserved in healthy older adults and that representations of spatial information persist over short intervals.  相似文献   

16.
Although the psychophysics of infants’ nonsymbolic number representations have been well studied, less is known about other characteristics of the approximate number system (ANS) in young children. Here three experiments explored the extent to which the ANS yields abstract representations by testing infants’ ability to transfer approximate number representations across sensory modalities. These experiments showed that 6-month-olds matched the approximate number of sounds they heard to the approximate number of sights they saw, looking longer at visual arrays that numerically mismatched a previously heard auditory sequence. This looking preference was observed when sights and sounds mismatched by 1:3 and 1:2 ratios but not by a 2:3 ratio. These findings suggest that infants can compare numerical information obtained in different modalities using representations stored in memory. Furthermore, the acuity of 6-month-olds’ comparisons of intermodal numerical sequences appears to parallel that of their comparisons of unimodal sequences.  相似文献   

17.
On an automated task, humans selected the larger of two sets of items, each created through the one-by-one addition of items. Participants repeated the alphabet out loud during trials so that they could not count the items. This manipulation disrupted counting without producing major effects on other cognitive capacities such as memory or attention, and performance of this experimental group was poorer than that of participants who counted the items. In Experiment 2, the size of individual items was varied, and performance remained stable when the larger numerical set contained a smaller total amount than the smaller numerical set (i.e., participants used numerical rather than nonnumerical quantity cues in making judgements). In Experiment 3, reports of the number of items in a single set showed scalar variability as accuracy decreased, and variability in responses increased with increases in true set size. These data indicate a mechanism for the approximate representation of numerosity in adult humans that might be shared with nonhuman animals.  相似文献   

18.
On an automated task, humans selected the larger of two sets of items, each created through the one-by-one addition of items. Participants repeated the alphabet out loud during trials so that they could not count the items. This manipulation disrupted counting without producing major effects on other cognitive capacities such as memory or attention, and performance of this experimental group was poorer than that of participants who counted the items. In Experiment 2, the size of individual items was varied, and performance remained stable when the larger numerical set contained a smaller total amount than the smaller numerical set (i.e., participants used numerical rather than nonnumerical quantity cues in making judgements). In Experiment 3, reports of the number of items in a single set showed scalar variability as accuracy decreased, and variability in responses increased with increases in true set size. These data indicate a mechanism for the approximate representation of numerosity in adult humans that might be shared with nonhuman animals.  相似文献   

19.
In two experiments, a manual search task explored 12- to 14-month-old infants’ representations of small sets of objects. In this paradigm, patterns of searching revealed the number of objects infants represented as hidden in an opaque box. In Experiment 1, we obtained the set-size signature of object-file representations: infants succeeded at representing precisely 1, precisely 2, and precisely 3 objects in the box, but failed at representing 4 (or even that 4 is greater than 2). In Experiment 2, we showed that infants’ expectations about the contents of the box were based on number of individual objects, and not on a continuous property such as total object volume. These findings support the hypothesis that infants maintained representations of individuals, that object-files were the underlying means of representing these individuals, and that object-file models can be compared via one-to-one correspondence to establish numerical equivalence.  相似文献   

20.
Despite a large literature on infants’ memory for visually presented stimuli, the processes underlying visual memory are not well understood. Two studies with 4-month-olds (N = 60) examined the effects of providing opportunities for comparison of items on infants’ memory for those items. Experiment 1 revealed that 4-month-olds failed to show evidence of memory for an item presented during familiarization in a standard task (i.e., when only one item was presented during familiarization). In Experiment 2, infants showed robust memory for one of two different items presented during familiarization. Thus, infants’ memory for the distinctive features of individual items was enhanced when they could compare items.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号