首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of stride frequency on the energy cost of walking in obese teenagers   总被引:1,自引:0,他引:1  
The aim of this study was to compare the energy cost of obese and non-obese teenagers while walking at their preferred speed and different stride frequencies. Twelve obese and twelve non-obese teenagers walked continuously on the treadmill at their most comfortable speed for 6 periods of 4 min each. Each period corresponded to a specific stride frequency: preferred (PSF), force-driven harmonic oscillator (FDHO), PSF + 10%, PSF + 20%, PSF − 10% and PSF − 20%. Cardiorespiratory parameters were collected between the 3rd and 4th minute of each stage, and used to calculate the energy cost of walking (EC). The main results showed a significantly higher cost of walking expressed relative to lean body mass. In addition, a U-shaped relationship between EC and stride frequency was shown in both groups, with PSF and FDHO leading to a significantly lower value compared to all other frequencies. This showed first, that FDHO is a good predictor of PSF and minimal energy cost of walking in both groups, and second, that excess body fat does not affect the relationship between energy expenditure and stride frequency. Walking at lower or higher than preferred frequencies could be used as an exercise mode to promote weight loss in obese teenagers.  相似文献   

2.
To determine the effects of speed on gait previous studies have examined young adults walking at different speeds; however, the small number of strides may have influenced the results. The aim of this study was to investigate the immediate and long-term impact of continuous slow walking on the mean, variability and structure of stride-to-stride measures. Fourteen young adults walked at a constant pace on a treadmill at three speeds (preferred walking speed (PWS), 90% and 80% PWS) for 30 min each. Spatiotemporal gait parameters were computed over six successive 5-min intervals. Walking slower significantly decreased stride length, while stride period and width increased. Additionally, stride period and width variability increased. Signal regularity of stride width increased and decreased in stride period. Persistence of stride period and width increased significantly at slower speeds. While several measures changed during 30 min of walking, only stride period variability and signal regularity revealed a significant speed and time interaction. Healthy young adults walking at slower than preferred speeds demonstrated greater persistence and signal regularity of stride period while spatiotemporal changes such as increased stride width and period variability arose. These results suggest that different control processes are involved in adapting to the slower speeds.  相似文献   

3.
The objective of this study was to characterize joint angle variation across strides. Specifically, the statistical persistence of variations were quantified using the Hurst exponent. If a time series exhibits statistical persistence, then a parameter which is smaller (or larger) than average will tend to be followed by additional values that are also smaller (or larger) than average. Human walking has statistical persistence between stride durations. Variation in stride duration must arise from variation in the motion of the leg segments during walking. It is unclear, however, if the joint angle variation also exhibits statistical persistence. This study examined kinematic data collected from nine healthy adults walking for 10 min at a self-selected comfortable speed on a treadmill. The joint angle variation in the lower limbs was parameterized using first-order Fourier series which in turn were described by frequency and magnitude coefficients for each stride. To determine if the joint angle variation exhibited statistical persistence, the Hurst exponent was found for each coefficient at each joint. The mean Hurst exponents were 0.54 for the frequency coefficients and 0.61 for the magnitude coefficients. Neither the frequency or magnitude coefficients exhibited statistically significant persistence, although some of the magnitude coefficients were close to reaching statistical significance. This suggests that joint angle variability in healthy adults does not directly produce the statistical persistence observed in stride duration fluctuations.  相似文献   

4.
Sensorimotor synchronization has been used in the rehabilitation of gait, yet much remains unknown regarding the optimal use of this technique. The purpose of this study was to test the hypothesis that adding small amounts of variability to the motion of a vertically oscillating treadmill would affect the behavior of healthy walkers. Sixteen young adults walked on a treadmill and pneumatically actuated platform for one control trial (no oscillation) and eight trials in which the walking surface oscillated in the vertical direction under different conditions of variability. During the oscillation trials, the mean frequency of oscillation was equal to the preferred step frequency of the participant, but each individual cycle period was allowed to vary within a pre-determined range from 0% (no variability) to ±25% (high variability) of the mean cycle period. The amount of variance of each cycle period within each condition was drawn randomly from a white noise generator. Synchronization was improved when a small amount of noise was added to the platform motion but synchronization significantly decreased at higher levels of noise. Coefficient of variation of stride duration was relatively unchanged at lower levels of variability, but increased significantly at higher levels of variability. Statistical persistence of stride duration was significantly reduced during all trials with vertical oscillation relative to normal walking, but was not significantly altered by variability in the treadmill oscillation. These results suggest that the addition of a small amount of random variability to the cycle period of an oscillator may enhance sensorimotor synchronization of gait to an external signal. These data may have implications for the use of synchronization in a therapeutic setting.  相似文献   

5.
Dual-task related gait changes have been previously reported for healthy older adults, suggesting that gait control requires attention. Compared to balance control, the involvement of attention in the control of the rhythmic stepping mechanism, as reflected by stride time variability, is not well known. In particular, under dual-task, the relative contributions of a second, attention-demanding task and changes in walking speed remain unclear. Thus, the aims of this study were (1) to assess whether walking with a slow-selected speed or walking while performing an attention-demanding task affected stride time variability in a sample of healthy older participants, and (2) to establish whether stride time variability under dual-task conditions is related either to the decrease of walking speed or the simultaneous attention-demanding task, or to both. Forty-five healthy older participants performed four experimental conditions: (1) walking at a normal self-selected speed, (2) walking at a slow self-selected speed, (3) performing a verbal fluency task when sitting on a chair, and (4) performing the verbal fluency task while walking at self-selected walking speed. Gait parameters were recorded across 15 meters, using Physilog. Results showed a significant dual-task related decrease in mean values of stride velocity, as well as a significant increase in mean values and coefficients of variation of stride time. These dual-task related changes in stride time were explained by the simultaneous performance of the verbal fluency task, the decrease of gait speed and the variability between participants. Although a relationship exists between decreased walking speed and increased stride time variability, the dual-task related increase of stride time variability was also significantly associated with the attention-demanding task, suggesting some attentional control for the rhythmic stepping mechanism of walking in healthy older adults.  相似文献   

6.
It is common sense that walking on sand poses challenges to postural control. However, there are no studies quantifying the kinematics of sand walking compared to other types of postural perturbations such as unstable shoes. The aim of the study was to investigate differences in walking kinematics during walking on solid ground, in unstable shoes and on unstable surfaces. Nineteen healthy young adults (23.5 ± 1.5 years) performed three different walking tasks: 1) walking at preferred speed while wearing regular shoes; 2) Walking at preferred speed wearing Masai Barefoot Technology shoes and 3) barefoot walking at preferred speed on a large sand grave. Full-body kinematics were recorded during all conditions using an inertial motion capture system. Basic gait parameters (walking speed, stride length and duration), relative vertical center-of-mass position (rvCOM), and ankle, knee and hip joint angles in the sagittal plane were compared across the tasks through statistical parametric mapping over the course of full walking cycles. Participants presented similar walking speed, as well as stride length and duration across different conditions (p > 0.05). However, walking on sand reduced the rvCOM (p < 0.05), while also requiring greater ankle plantarflexion during stance phase (p < 0.05), as well as greater knee and hip flexion during leg swing and initial contact when compared to the other conditions (p < 0.05). It was concluded that walking on sand substantially changes walking kinematics, and may cause greater postural instability than unstable shoes. Therefore, walking on sand can be an alternative to improve postural control in patients undergoing walking rehabilitation.  相似文献   

7.
Biomechanical motor patterns in normal walking   总被引:10,自引:0,他引:10  
Motor patterns in normal human gait are evident in several biomechanical and EMG analyses over the stride period. Some of these patterns are invariant over the stride period with changes of cadence, whole others are closely correlated with speed changes. The findings for slow, natural, and fast walking are summarized: 1. Joint angle patterns over the stride period are quite invariant, and do not change with cadence; 2. Moment of force patterns at the ankle are least variable and quite consistent at all speeds; 3. A recently defined support moment is quite consistent at all speeds. 4. Moments at the knee and hip are highly variable at all cadences but decrease their variability as cadence increases; 5. Mechanical power patterns at all joints show consistent timing over the stride period; 6. EMG profiles of 5 muscles show consistent timing over the stride, but the amplitude increases as walking speed increases. Arguments are presented to support the concept that walking speed is largely controlled by gain and that the timing of the motor patterns, which is extremely tightly synchronized with the anatomical position, is under major afferent control.  相似文献   

8.
In gait research, casual walking has been considered to be walking at a casual speed. However, it is unclear that walking speed is the most stable factor in casual walking compared to other factors such as cycle duration and stride length. Although walking speed can be calculated from cycle duration and stride length, it is not necessarily the case that these parameters are "stable" in the same manner. We therefore conducted an experiment to determine which of these three parameters is most stable, regarding walking speed as cycle speed and using the coefficient of variation across gait cycles as index of stability. Ten participants were invited to walk in their own casual manner, once a week for a period of four weeks. Cycle duration was measured by means of a foot switch attached to the right heel. To measure the moving distance, participants towed a distance meter. Stride length and cycle speed were measured using this device. Over the four-week period, cycle duration and stride length were stable, whereas cycle speed was the most variable parameter. Furthermore, in the results for each single day, the cycle duration was significantly more stable than the other parameters. These results suggest that, when we walk casually, cycle duration is the dominant factor, rather than stride length or walking speed.  相似文献   

9.
Donker SF  Beek PJ 《Acta psychologica》2002,110(2-3):265-288
The present study focuses on interlimb coordination in walking with an above-knee prosthesis using concepts and tools of dynamical systems theory (DST). Prosthetic walkers are an interesting group to investigate from this theory because their locomotory system is inherently asymmetric, while, according to DST, coordinative stability may be expected to be reduced as a function of the asymmetry of the oscillating components. Furthermore, previous work on locomotion motivated from DST has shown that the stability of interlimb coordination increases with walking velocity, leading to the additional expectation that the anticipated destabilizing effect of the prosthesis-induced asymmetry may be diminished at higher walking velocities. To examine these expectations, an experiment was conducted aimed at comparing interlimb coordination during treadmill walking between seven participants with an above-knee prosthesis and seven controls across a range of walking velocities. The observed gait patterns were analyzed in terms of standard gait measures (i.e., absolute and relative swing, stance and step times) and interlimb coordination measures (i.e., relative phase and frequency locking). As expected, the asymmetry brought about by the prosthesis led to a decrease in the stability of the coordination between the legs as compared to the control group, while coordinative stability increased with increasing walking velocity in both groups in the absence of a significant interaction. In addition, the 2:1 frequency coordination between arm and leg movements that is generally observed in healthy walkers at low walking velocities was absent in the prosthetic walkers. Collectively, these results suggest that both stability and adaptability of coordination are reduced in prosthetic walkers but may be enhanced by training them to walk at higher velocities.  相似文献   

10.
Motor patterns in normal human gait are evident in several biomechanical and EMG analyses over the stride period. Some of these patterns are invariant over the stride period with changes of cadence, while others are closely correlated with speed changes. The findings for slow, natural, and fast walking are summarized: 1. Joint angle patterns over the stride period are quite invariant, and do not change with cadence;

2. Moment of force patterns at the ankle are least variable and quite consistent at all speeds;

3. A recently defined support moment is quite consistent at all speeds.

4. Moments at the knee and hip are highly variable at all cadences but decrease their variability as cadence increases;

5. Mechanical power patterns at all joints show consistent timing over the stride period;

6. EMG profiles of 5 muscles show consistent timing over the stride, but the amplitude increases as walking speed increases.

Arguments are presented to support the concept that walking speed is largely controlled by gain and that the timing of the motor patterns, which is extremely tightly synchronized with the anatomical position, is under major afferent control.  相似文献   

11.
Load carriage can be harmful for workers, and alternative interventions to reduce back pain while walking and carrying loads are necessary. Unstable shoes have been used to improve balance and reduce back pain, but it is unknown whether walking wearing unstable shoes while carrying loads anteriorly causes excessive trunk extensors muscle activation. The aim of this study was to investigate the effects of different shoe types and anterior load carriage on gait kinematics and lumbar electromyographic (EMG) activity. Fourteen adults that predominantly walk or stand during the work day were asked to walk with and without carrying 10% of body mass anteriorly while wearing regular walking shoes (REG) and unstable shoes (MBT). The effects of shoe type, load carriage, and shoe × load interactions on the longissimus thoracis (LT) and iliocostalis lumborum (IC) EMG, stride duration, and stride frequency were assessed. MBT shoes induced a significant increase in LT (44.4 ± 35%) and IC EMG (33.0 ± 32%, p < .005), while load carriage increased LT (58.5 ± 41%) and IC EMG (55.1 ± 32%, p < .001). No significant shoe × load interaction was found (p>.05). However, walking wearing MBT shoes while carrying loads induced a 46 ± 40% higher EMG activity compared to walking wearing MBT shoes without load carriage. No effects of shoes or load carriage were found on stride duration and stride frequency. It was concluded that walking wearing MBT shoes and carrying 10% of total body mass induced greater activation of trunk extensors muscle compared to these factors in isolation, such a combination may not influence gait patterns.  相似文献   

12.
Children voluntarily adopt a frequency and movement pattern for walking. The force-driven harmonic oscillator (FDHO) model was used in this study for accurate prediction of the preferred walking frequency of nondisabled children and children with spastic hemiplegic cerebral palsy. Four potential optimality criteria with which the preferred walking pattern was forced to comply were examined: minimization of physiological costs, maximization of mechanical energy conservation, minimization of asymmetry in lower limb movements and minimization of variability of interlimb and intralimb coordination. Age and gender-matched nondisabled children (n = 6) and children with spastic hemiplegic cerebral palsy (n = 6) were tested under six frequency conditions of walking at a constant speed on a treadmill. For the nondisabled children, the results indicated that their preferred walking frequency could be accurately predicted by the FDHO model. They freely adopted a walking pattern that minimized physiological costs, asymmetry, and variability of inter- and intralimb coordination. For the children with spastic hemiplegic cerebral palsy, the prediction of preferred overground walking frequency required that the FDHO model be modified to account for muscle mass and leg length discrepancies between limbs and increased stiffness. Most of the children achieved the same optimality goals as the nondisabled when walking at the preferred frequency. However, the children were found to use different mechanisms to attain these goals: for example, a steeper increase observed in physiological cost at higher frequencies; a lowered center of gravity of the body, which allowed for angular symmetry; and greater variability of between-joint coordination in the nonaffected limb and less variability in the affected limb.  相似文献   

13.
This study had two main aims: 1) to investigate if the walk-to-run (WR-) transition occurs when the speed of locomotion is kept constant below the WR-transition speed (speed clamp) and the stride rate is increased monotonously using a metronome and 2) to investigate if diversion of attention and awareness from the locomotion process influences the position of the WR-transition in stride rate, stride length, and locomotion speed (SrSlLs) space.Eighteen healthy individuals (13 men and 5 women) were recruited (age: 23.9 ± 1.5 years, height: 1.77 ± 0.10 m and body mass: 77.3 ± 12.8 kg). Stride-by-stride stride rates, stride lengths, locomotion speeds, and duty factors were determined on a treadmill in 4 different tests: 1) reference WR-transition, 2) preferred walking speed, 3) dual-task test including arithmetic calculations and 4) four speed clamp bouts with different initial velocities.Walk-to-run transitions were elicited in all participants in the speed clamp bouts. When the stride rate ramp was clamped at preferred walking speed the WR-transition stride rate was not significantly different from the WR-transition stride rate during the reference test (t = 2.2, p = 0.312). However, in the SrSlLs space the speed clamp WR-transitions all deviated from the position of the reference WR-transition. Additionally, it was demonstrated that intensive attentional diversion using a dual-task paradigm had very little influence on the position of the WR-transition in the SrSlLs space.It is argued that these observations can be explained in the context of the behavior of complex systems.  相似文献   

14.
The authors examined the changes in bipedal gait of toddlers in the anteroposterior (AP) and mediolateral (ML) directions, as a set, at the onset of independent gait and 1 month after onset. Two groups with distinctly different dynamic resources were studied: 8 toddlers with typical development (TD) and 8 toddlers with Down syndrome (DS). Three-dimensional kinematic data were collected, and gait parameters, such as walking speed, stride length, and stride frequency, as well as the ratio of exchange between potential energy and kinetic energy of the center of mass (COM), were calculated. Displacement of the COM in the AP and ML directions were also analyzed. For some gait variables, toddlers with DS seemed to show more mature values at walking onset than their peers with TD. Those group differences reversed and increased by Visit 2. When the authors considered the motion of the COM of the system, it became clear that the qualitative differences between those groups were characterized primarily by constraints in the ML direction. The authors propose that establishment of coupling between AP and ML oscillations is a key component for the emergence of independent bipedal walking for both populations.  相似文献   

15.
To evaluate how fundamental gait parameters used in walking (stride length, frequency, speed) are selected by cats we compared stride characteristics selected when walking on a solid surface to those selected when they were constrained to specific stride lengths using a pedestal walkway. Humans spontaneously select substantially different stride length–stride frequency–speed relationships in walking when each of these parameters is constrained, as in walking to a metronome beat (frequency constrained), evenly spaced floor markers (stride length constrained) or on a treadmill (speed constrained). In humans such adjustments largely provide energetic economy under the prescribed walking conditions. Cats show a similar shift in gait parameter selection between conditions as observed in humans. This suggests that cats (and by extension, quadrupedal mammals) also select gait parameters to optimize walking cost-effectiveness. Cats with a profound peripheral sensory deficit (from pyridoxine overdose) appeared to parallel the optimization seen in healthy cats, but without the same level of precision. Recent studies in humans suggest that gait optimization may proceed in two stages – a fast perception-based stage that provides the initial gait selection strategy which is then fine-tuned by feedback. The sensory deficit cats appeared unable to accomplish the feedback-dependent aspect of this process.  相似文献   

16.
It has been reported that obstacle avoidance reactions during gait have very short latencies. This raises the question whether the cortex can be involved, as it is in voluntary reactions. In this study, latencies of obstacle avoidance (OA) reactions were determined and related to latencies of voluntary stride modifications and simple reaction times (SRT) of hand and foot. Twenty-five healthy young adults participated in this study. While they were walking on the treadmill, an obstacle suddenly fell in front of their left leg. The first reaction to the obstacle was the moment at which the differentiated acceleration curve of the foot deviated from the control signal. Latencies of OA reactions were 122 ms (SD 14 ms) on average. Two very different avoidance reactions (lengthening and shortening of the stride) were noticed, but there was no avoidance strategy effect on OA latencies. OA latencies were significantly shorter as compared to latencies of voluntary stride modifications and simple reaction times of hand and foot. The short OA latencies could not only be explained from the dynamic nature of the task. It is suggested that subcortical pathways might be involved in obstacle avoidance.  相似文献   

17.
The authors investigated the self-selected, overground walking patterns of 7 children (aged 11 months to 1 year, 5 months) at the initiation of walking (brand-new walkers [BNWs]) and for the next 6 months at 1-month intervals. Walking speed, stride length, and stride frequency increased significantly between the first 2 visits without significant changes in height and weight. The authors calculated sagittal plane angular accelerations of the center of mass over the foot for each step as an indicator of the escapement pulse. Results for the acceleration profiles changed after the 1st visit to positive, single-peaked accelerations that occurred < 0.20 s after initial foot contact. Increases in sagittal plane hip angular displacement and decreases in frontal plane pelvic angular displacement were observed. The pattern changes suggest that children quickly discover appropriately timed and directed escapements that initiate and support the conservative sagittal plane pendulum and spring dynamics observed in older children.  相似文献   

18.
The authors investigated the self-selected, overground walking patterns of 7 children (aged 11 months to 1 year, 5 months) at the initiation of walking (brand-new walkers [BNWs]) and for the next 6 months at 1-month intervals. Walking speed, stride length, and stride frequency increased significantly between the first 2 visits without significant changes in height and weight. The authors calculated sagittal plane angular accelerations of the center of mass over the foot for each step as an indicator of the escapement pulse. Results for the acceleration profiles changed after the 1st visit to positive, single-peaked accelerations that occurred < 0.20 s after initial foot contact. Increases in sagittal plane hip angular displacement and decreases in frontal plane pelvic angular displacement were observed. The pattern changes suggest that children quickly discover appropriately timed and directed escapements that initiate and support the conservative sagittal plane pendulum and spring dynamics observed in older children.  相似文献   

19.
The authors investigated the effects of velocity (increasing from 0.5 to 5.0 km/hr in steps of 0.5 km/hr) and limb loading on the coordination between arm and leg movements during treadmill walking in 7 participants. Both the consistency of the individual limb movements and the stability of their coordination increased with increasing velocity; the frequency coordination between arm and leg movements was 2:1 at the lower velocities and 1:1 at the higher velocities. The mass manipulation affected the individual limb movements but not their coordination, indicating that a stable walking pattern was preserved. The results differed qualitatively from those obtained in studies on bimanual interlimb coordination, implying that the dynamical principles identified therein are not readily applicable to locomotion.  相似文献   

20.
The objective of this study was to determine (1) if a novel haptic feedback system could increase the walking speed of older adults while it is being employed during overground walking and (2) whether the frequency at which this feedback was presented would have a differential impact on the ability of users to change walking speed while it was present. Given that peak thigh extension has been found to be a biomechanical surrogate for stride length, and consequently gait speed, vibrotactile haptic feedback was provided to the participants' thighs as a cue to increase peak thigh extension while the effect on gait speed was monitored. Ten healthy community-dwelling older adults (68.4 ± 4.1 years) participated. Participants' peak thigh extension, cadence, normalized stride length and velocity, along with their coefficients of variation (COV) were compared across baseline normal and fast walking (with no feedback) and three different frequency of feedback conditions. The findings indicated that, compared to self-selected normal and fast walking speeds, peak thigh extension was significantly increased when feedback was present and after it was withdrawn in a post-test. An increase in thigh extension led to an increase in stride length and, consequently, an increase in stride velocity compared to normal speed. There were no significant differences in the gait parameters as a function of feedback frequency during its application. In conclusion, while present, the haptic feedback system increased thigh extension and walking speed in older adults regardless of the feedback frequency and when the feedback was withdrawn, participants could maintain an increase in those parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号