首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We outline the rather complicated history of attempts at axiomatizing Ja?kowski’s discussive logic \(\mathbf {D_2}\) and show that some clarity can be had by paying close attention to the language we work with. We then examine the problem of axiomatizing \(\mathbf {D_2}\) in languages involving discussive conjunctions. Specifically, we show that recent attempts by Ciuciura are mistaken. Finally, we present an axiomatization of \(\mathbf {D_2}\) in the language Ja?kowski suggested in his second paper on discussive logic, by following a remark of da Costa and Dubikajtis. We also deal with an interesting variant of \(\mathbf {D_2}\), introduced by Ciuciura, in which negation is also taken to be discussive.  相似文献   

2.
A contraction-free and cut-free sequent calculus \(\mathsf {G3SDM}\) for semi-De Morgan algebras, and a structural-rule-free and single-succedent sequent calculus \(\mathsf {G3DM}\) for De Morgan algebras are developed. The cut rule is admissible in both sequent calculi. Both calculi enjoy the decidability and Craig interpolation. The sequent calculi are applied to prove some embedding theorems: \(\mathsf {G3DM}\) is embedded into \(\mathsf {G3SDM}\) via Gödel–Gentzen translation. \(\mathsf {G3DM}\) is embedded into a sequent calculus for classical propositional logic. \(\mathsf {G3SDM}\) is embedded into the sequent calculus \(\mathsf {G3ip}\) for intuitionistic propositional logic.  相似文献   

3.
We prove that for any recursively axiomatized consistent extension T of Peano Arithmetic, there exists a \(\Sigma _2\) provability predicate of T whose provability logic is precisely the modal logic \(\mathsf{K}\). For this purpose, we introduce a new bimodal logic \(\mathsf{GLK}\), and prove the Kripke completeness theorem and the uniform arithmetical completeness theorem for \(\mathsf{GLK}\).  相似文献   

4.
5.
While dynamic epistemic logics with common knowledge have been extensively studied, dynamic epistemic logics with distributed knowledge have so far received far less attention. In this paper we study extensions of public announcement logic (\(\mathcal{PAL }\)) with distributed knowledge, in particular their expressivity, axiomatisations and complexity. \(\mathcal{PAL }\) extended only with distributed knowledge is not more expressive than standard epistemic logic with distributed knowledge. Our focus is therefore on \(\mathcal{PACD }\), the result of adding both common and distributed knowledge to \(\mathcal{PAL }\), which is more expressive than each of its component logics. We introduce an axiomatisation of \(\mathcal{PACD }\), which is not surprising: it is the combination of well-known axioms. The completeness proof, however, is not trivial, and requires novel combinations and extensions of techniques for dealing with \(S5\) knowledge, distributed knowledge, common knowledge and public announcements at the same time. We furthermore show that \(\mathcal{PACD }\) is decidable, more precisely that it is \(\textsc {exptime}\)-complete. This result also carries over to \(\mathcal{S 5\mathcal CD }\) with common and distributed knowledge operators for all coalitions (and not only the grand coalition). Finally, we propose a notion of a trans-bisimulation to generalise certain results and give deeper insight into the proofs.  相似文献   

6.
Philip Kremer 《Studia Logica》2018,106(6):1097-1122
The simplest bimodal combination of unimodal logics \(\text {L} _1\) and \(\text {L} _2\) is their fusion, \(\text {L} _1 \otimes \text {L} _2\), axiomatized by the theorems of \(\text {L} _1\) for \(\square _1\) and of \(\text {L} _2\) for \(\square _2\), and the rules of modus ponens, necessitation for \(\square _1\) and for \(\square _2\), and substitution. Shehtman introduced the frame product \(\text {L} _1 \times \text {L} _2\), as the logic of the products of certain Kripke frames: these logics are two-dimensional as well as bimodal. Van Benthem, Bezhanishvili, ten Cate and Sarenac transposed Shehtman’s idea to the topological semantics and introduced the topological product \(\text {L} _1 \times _t \text {L} _2\), as the logic of the products of certain topological spaces. For almost all well-studies logics, we have \(\text {L} _1 \otimes \text {L} _2 \subsetneq \text {L} _1 \times \text {L} _2\), for example, \(\text {S4} \otimes \text {S4} \subsetneq \text {S4} \times \text {S4} \). Van Benthem et al. show, by contrast, that \(\text {S4} \times _t \text {S4} = \text {S4} \otimes \text {S4} \). It is straightforward to define the product of a topological space and a frame: the result is a topologized frame, i.e., a set together with a topology and a binary relation. In this paper, we introduce topological-frame products \(\text {L} _1 \times _ tf \text {L} _2\) of modal logics, providing a complete axiomatization of \(\text {S4} \times _ tf \text {L} \), whenever \(\text {L} \) is a Kripke complete Horn axiomatizable extension of the modal logic D: these extensions include \(\text {T} , \text {S4} \) and \(\text {S5} \), but not \(\text {K} \) or \(\text {K4} \). We leave open the problem of axiomatizing \(\text {S4} \times _ tf \text {K} \), \(\text {S4} \times _ tf \text {K4} \), and other related logics. When \(\text {L} = \text {S4} \), our result confirms a conjecture of van Benthem et al. concerning the logic of products of Alexandrov spaces with arbitrary topological spaces.  相似文献   

7.
Every transformation monoid comes equipped with a canonical topology, the topology of pointwise convergence. For some structures, the topology of the endomorphism monoid can be reconstructed from its underlying abstract monoid. This phenomenon is called automatic homeomorphicity. In this paper we show that whenever the automorphism group of a countable saturated structure has automatic homeomorphicity and a trivial center, then the monoid of elementary self-embeddings has automatic homeomorphicity, too. As a second result we strengthen a result by Lascar by showing that whenever \({\mathbf {A}}\) is a countable \(\aleph _0\)-categorical G-finite structure whose automorphism group has a trivial center and if \({\mathbf {B}}\) is any other countable structure, then every isomorphism between the monoids of elementary self-embeddings is a homeomorphism.  相似文献   

8.
Taishi Kurahashi 《Studia Logica》2018,106(6):1181-1196
We prove that for each recursively axiomatized consistent extension T of Peano Arithmetic and \(n \ge 2\), there exists a \(\Sigma _2\) numeration \(\tau (u)\) of T such that the provability logic of the provability predicate \(\mathsf{Pr}_\tau (x)\) naturally constructed from \(\tau (u)\) is exactly \(\mathsf{K}+ \Box (\Box ^n p \rightarrow p) \rightarrow \Box p\). This settles Sacchetti’s problem affirmatively.  相似文献   

9.
The two-sample problem for Cronbach’s coefficient \(\alpha _C\), as an estimate of test or composite score reliability, has attracted little attention compared to the extensive treatment of the one-sample case. It is necessary to compare the reliability of a test for different subgroups, for different tests or the short and long forms of a test. In this paper, we study statistical procedures of comparing two coefficients \(\alpha _{C,1}\) and \(\alpha _{C,2}\). The null hypothesis of interest is \(H_0 : \alpha _{C,1} = \alpha _{C,2}\), which we test against one-or two-sided alternatives. For this purpose, resampling-based permutation and bootstrap tests are proposed for two-group multivariate non-normal models under the general asymptotically distribution-free (ADF) setting. These statistical tests ensure a better control of the type-I error, in finite or very small sample sizes, when the state-of-affairs ADF large-sample test may fail to properly attain the nominal significance level. By proper choice of a studentized test statistic, the resampling tests are modified in order to be valid asymptotically even in non-exchangeable data frameworks. Moreover, extensions of this approach to other designs and reliability measures are discussed as well. Finally, the usefulness of the proposed resampling-based testing strategies is demonstrated in an extensive simulation study and illustrated by real data applications.  相似文献   

10.
Pretabular logics are those that lack finite characteristic matrices, although all of their normal proper extensions do have some finite characteristic matrix. Although for Anderson and Belnap’s relevance logic R, there exists an uncountable set of pretabular extensions (Swirydowicz in J Symb Log 73(4):1249–1270, 2008), for the classical relevance logic \( \hbox {KR} = \hbox {R} + \{(A\,\, \& \sim A)\rightarrow B\}\) there has been known so far a pretabular extension: \({\mathcal L}\) (Galminas and Mersch in Stud Log 100:1211–1221, 2012). In Section 1 of this paper, we introduce some history of pretabularity and some relevance logics and their algebras. In Section 2, we introduce a new pretabular logic, which we shall name \({\mathcal M}\), and which is a neighbor of \({\mathcal L}\), in that it is an extension of KR. Also in this section, an algebraic semantics, ‘\({\mathcal M}\)-algebras’, will be introduced and the characterization of \({\mathcal M}\) to the set of finite \({\mathcal M}\)-algebras will be shown. In Section 3, the pretabularity of \({\mathcal M}\) will be proved.  相似文献   

11.
Joost J. Joosten 《Studia Logica》2016,104(6):1225-1243
Turing progressions have been often used to measure the proof-theoretic strength of mathematical theories: iterate adding consistency of some weak base theory until you “hit” the target theory. Turing progressions based on n-consistency give rise to a \({\Pi_{n+1}}\) proof-theoretic ordinal \({|U|_{\Pi^0_{n+1}}}\) also denoted \({|U|_n}\). As such, to each theory U we can assign the sequence of corresponding \({\Pi_{n+1}}\) ordinals \({\langle |U|_n\rangle_{n > 0}}\). We call this sequence a Turing-Taylor expansion or spectrum of a theory. In this paper, we relate Turing-Taylor expansions of sub-theories of Peano Arithmetic to Ignatiev’s universal model for the closed fragment of the polymodal provability logic \({\mathsf{GLP}_\omega}\). In particular, we observe that each point in the Ignatiev model can be seen as Turing-Taylor expansions of formal mathematical theories. Moreover, each sub-theory of Peano Arithmetic that allows for a Turing-Taylor expansion will define a unique point in Ignatiev’s model.  相似文献   

12.
The first section of the paper establishes the minimal properties of so-called consequential implication and shows that they are satisfied by at least two different operators of decreasing strength (symbolized by \(\rightarrow \) and \(\Rightarrow \)). Only the former has been analyzed in recent literature, so the paper focuses essentially on the latter. Both operators may be axiomatized in systems which are shown to be translatable into standard systems of normal modal logic. The central result of the paper is that the minimal consequential system for \(\Rightarrow \), CI\(\Rightarrow \), is definitionally equivalent to the deontic system KD and is intertranslatable with the minimal consequential system for \(\rightarrow \), CI. The main drawback ot the weaker operator \(\Rightarrow \) is that it lacks unrestricted contraposition, but the final section of the paper argues that \(\Rightarrow \) has some properties which make it a valuable alternative to \(\rightarrow \), turning out especially plausible as a basis for the definition of operators representing synthetic (i.e. context-dependent) conditionals.  相似文献   

13.
Stevens’ power law for the judgments of sensation has a long history in psychology and is used in many psychophysical investigations of the effects of predictors such as group or condition. Stevens’ formulation \(\varPsi = {aP}^{n}\), where \(\varPsi \) is the psychological judgment, P is the physical intensity, and \(n\) is the power law exponent, is usually tested by plotting log \((\varPsi )\) against log (P). In some, but by no means all, studies, effects on the scale parameter, \(a\), are also investigated. This two-parameter model is simple but known to be flawed, for at least some modalities. Specifically, three-parameter functions that include a threshold parameter produce a better fit for many data sets. In addition, direct non-linear computation of power laws often fit better than regressions of log-transformed variables. However, such potentially flawed methods continue to be used because of assumptions that the approximations are “close enough” as to not to make any difference to the conclusions drawn (or possibly through ignorance the errors in these assumptions). We investigate two modalities in detail: duration and roughness. We show that a three-parameter power law is the best fitting of several plausible models. Comparison between this model and the prevalent two parameter version of Stevens’ power law shows significant differences for the parameter estimates with at least medium effect sizes for duration.  相似文献   

14.
Philip Kremer 《Studia Logica》2016,104(3):487-502
The simplest combination of unimodal logics \({\mathrm{L}_1 \rm and \mathrm{L}_2}\) into a bimodal logic is their fusion, \({\mathrm{L}_1 \otimes \mathrm{L}_2}\), axiomatized by the theorems of \({\mathrm{L}_1 \rm for \square_1 \rm and of \mathrm{L}_2 \rm for \square_{2}}\). Shehtman introduced combinations that are not only bimodal, but two-dimensional: he defined 2-d Cartesian products of 1-d Kripke frames, using these Cartesian products to define the frame product\({\mathrm{L}_1 \times \mathrm{L}_2 \rm of \mathrm{L}_1 \rm and \mathrm{L}_2}\). Van Benthem, Bezhanishvili, ten Cate and Sarenac generalized Shehtman’s idea and introduced the topological product\({\mathrm{L}_1 \times_{t}\mathrm{L}_2}\), using Cartesian products of topological spaces rather than of Kripke frames. Frame products have been extensively studied, but much less is known about topological products. The goal of the current paper is to give necessary and sufficient conditions for the topological product to match the frame product, for Kripke complete extensions of \({\mathrm{S}4: \mathrm{L}_1 \times_t \mathrm{L}_2 = \mathrm{L}_1 \times \mathrm{L}_2 \rm iff \mathrm{L}_1 \supsetneq \mathrm{S}5 \rm or \mathrm{L}_2 \supsetneq \mathrm{S}5 \rm or \mathrm{L}_1, \mathrm{L}_2 = \mathrm{S}5}\).  相似文献   

15.
Given a positive definite covariance matrix \(\widehat{\Sigma }\) of dimension n, we approximate it with a covariance of the form \(HH^\top +D\), where H has a prescribed number \(k<n\) of columns and \(D>0\) is diagonal. The quality of the approximation is gauged by the I-divergence between the zero mean normal laws with covariances \(\widehat{\Sigma }\) and \(HH^\top +D\), respectively. To determine a pair (HD) that minimizes the I-divergence we construct, by lifting the minimization into a larger space, an iterative alternating minimization algorithm (AML) à la Csiszár–Tusnády. As it turns out, the proper choice of the enlarged space is crucial for optimization. The convergence of the algorithm is studied, with special attention given to the case where D is singular. The theoretical properties of the AML are compared to those of the popular EM algorithm for exploratory factor analysis. Inspired by the ECME (a Newton–Raphson variation on EM), we develop a similar variant of AML, called ACML, and in a few numerical experiments, we compare the performances of the four algorithms.  相似文献   

16.
Tadeusz Litak 《Studia Logica》2018,106(5):969-999
This paper criticizes non-constructive uses of set theory in formal economics. The main focus is on results on preference aggregation and Arrow’s theorem for infinite electorates, but the present analysis would apply as well, e.g., to analogous results in intergenerational social choice. To separate justified and unjustified uses of infinite populations in social choice, I suggest a principle which may be called the Hildenbrand criterion and argue that results based on unrestricted axiom of choice do not meet this criterion. The technically novel part of this paper is a proposal to use a set-theoretic principle known as the axiom of determinacy (\(\mathsf {AD}\)), not as a replacement for Choice, but simply to eliminate applications of set theory violating the Hildenbrand criterion. A particularly appealing aspect of \(\mathsf {AD}\) from the point of view of the research area in question is its game-theoretic character.  相似文献   

17.
18.
We start from Marra–Spada duality between semisimple MV-algebras and Tychonoff spaces, and we consider the particular cases when the \(\omega \)-skeleta of the MV-algebras are restricted in some way. In particular we consider antiskeletal MV-algebras, that is, the ones whose \(\omega \)-skeleton is trivial.  相似文献   

19.
William Roche 《Synthese》2018,195(9):3899-3917
There is a long-standing debate in epistemology on the structure of justification. Some recent work in formal epistemology promises to shed some new light on that debate. I have in mind here some recent work by David Atkinson and Jeanne Peijnenburg, hereafter “A&P”, on infinite regresses of probabilistic support. A&P show that there are probability distributions defined over an infinite set of propositions {\(p_{1}, p_{2}, p_{3}, {\ldots }, p_{n}, {\ldots }\}\) such that (i) \(p_{i}\) is probabilistically supported by \(p_{i+1}\) for all i and (ii) \(p_{1}\) has a high probability. Let this result be “APR” (short for “A&P’s Result”). A&P oftentimes write as though they believe that APR runs counter to foundationalism. This makes sense, since there is some prima facie plausibility in the idea that APR runs counter to foundationalism, and since some prominent foundationalists argue for theses inconsistent with APR. I argue, though, that in fact APR does not run counter to foundationalism. I further argue that there is a place in foundationalism for infinite regresses of probabilistic support.  相似文献   

20.
An equivalence between the category of MV-algebras and the category \({{\rm MV^{\bullet}}}\) is given in Castiglioni et al. (Studia Logica 102(1):67–92, 2014). An integral residuated lattice with bottom is an MV-algebra if and only if it satisfies the equations \({a = \neg \neg a, (a \rightarrow b) \vee (b\rightarrow a) = 1}\) and \({a \odot (a\rightarrow b) = a \wedge b}\). An object of \({{\rm MV^{\bullet}}}\) is a residuated lattice which in particular satisfies some equations which correspond to the previous equations. In this paper we extend the equivalence to the category whose objects are pairs (A, I), where A is an MV-algebra and I is an ideal of A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号