首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In three experiments we investigated the integration of three-dimensional information provided over time by different depth cues. In the first experiment, we found that the perceptual derivation of surface orientation from the optic flow was affected by the prior presentation of static stereo information in the same spatial location. This bias weakened as the length of the motion sequence increased, but it was still present after 800 msec. In the second experiment, conversely, we found that the perceived orientation of a stereo-specified surface was not influenced by the prior presentation of a static stereo surface. In a third experiment, we found that two surfaces defined by identical disparity fields did not elicit the same perceived depth if, previously, one of them had been specified by a conjunction of stereo and motion information. This effect was found to last for at least 400 msec. Taken together, these findings indicate that interactions exist among different sources of depth information, even when they are provided at different moments of time.  相似文献   

2.
Freeman TC  Sumnall JH 《Perception》2002,31(5):603-615
Abstract. Observers can recover motion with respect to the head during an eye movement by comparing signals encoding retinal motion and the velocity of pursuit. Evidently there is a mismatch between these signals because perceived head-centred motion is not always veridical. One example is the Filehne illusion, in which a stationary object appears to move in the opposite direction to pursuit. Like the motion aftereffect, the phenomenal experience of the Filehne illusion is one in which the stimulus moves but does not seem to go anywhere. This raises problems when measuring the illusion by motion nulling because the more traditional technique confounds perceived motion with changes in perceived position. We devised a new nulling technique using global-motion stimuli that degraded familiar position cues but preserved cues to motion. Stimuli consisted of random-dot patterns comprising signal and noise dots that moved at the same retinal 'base' speed. Noise moved in random directions. In an eye-stationary speed-matching experiment we found noise slowed perceived retinal speed as 'coherence strength' (ie percentage of signal) was reduced. The effect occurred over the two-octave range of base speeds studied and well above direction threshold. When the same stimuli were combined with pursuit, observers were able to null the Filehne illusion by adjusting coherence. A power law relating coherence to retinal base speed fit the data well with a negative exponent. Eye-movement recordings showed that pursuit was quite accurate. We then tested the hypothesis that the stimuli found at the null-points appeared to move at the same retinal speed. Two observers supported the hypothesis, a third partially, and a fourth showed a small linear trend. In addition, the retinal speed found by the traditional Filehne technique was similar to the matches obtained with the global-motion stimuli. The results provide support for the idea that speed is the critical cue in head-centred motion perception.  相似文献   

3.
We investigated the interaction between motion parallax and binocular disparity cues in the perception of surface shape and depth magnitude by the use of the random dot stimuli in which these cues specified sinusoidal depth surfaces undulating with different spatial frequencies. When ambiguous motion parallax is inconsistent with unambiguous disparity cue, the reasonable solution for the visual system is to convert the motion signal to the flow on the surface specified by disparity. Two experiments, however, found that the visual system did not always use this reasonable solution; observers often perceived the surface specified by a composite of the two cues, or the surface specified by parallax alone. In the perception of this composite of the two cues, the apparent depth magnitude increased with the increase of the depth magnitude specified by both cues. This indicates that the visual system can combine the depth magnitude information from parallax and disparity in an additive fashion. The interference with parallax by disparity implies that the parallax processing is not independent of the disparity processing.  相似文献   

4.
Prince S  Offen S  Cumming BG  Eagle RA 《Perception》2001,30(3):367-380
We examine how differently oriented components contribute to the discrimination of motion direction along a horizontal axis. Stimuli were two-frame random-dot kinematograms that were narrowband filtered in spatial frequency. On each trial, subjects had to state whether motion was to the left or the right. For each stimulus condition, Dmax (the largest displacement supporting 80% correct direction discrimination performance) was measured. In experiment 1, Dmax was measured for orientationally narrowband stimuli as a function of their mean orientation. Dmax was found to increase as the orientation of the stimuli became closer to the axis of motion. Experiment 2 used isotropic stimuli in which some orientation bands contained a coherent motion signal, and some contained only noise. When the noise band started at vertical orientations and increased until only horizontal orientations contained a coherent motion signal, Dmax increased slightly. This suggests that near-vertical orientations interfere with motion perception at large displacements when they contain a coherent motion signal. When the noise band started at horizontal and increased until only vertical orientations contained the motion signal, Dmax decreased steadily. This implies that Dmax depends at least partly on the most horizontal motion signal in the stimulus. These results were contrasted with two models. In the first, the visual system utilises the most informative orientations (nearest horizontal). In the second, all available orientations are used equally. Results supported an intermediate interpretation, in which all orientations are used but more informative ones are weighted more heavily.  相似文献   

5.
Ono H  Shimono K  Saida S  Ujike H 《Perception》2000,29(4):421-436
We examined Wheatstone's (1838 Philosophical Transactions of the Royal Society of London 128 371-394) claim that images falling on retinally corresponding points can be seen in two different directions, in violation of Hering's law of identical visual direction. Our analyses showed that random-dot stereograms contain stimulus elements that are conceptually equivalent to the line stimuli in the stereogram from which Wheatstone made his claim. Our experiment demonstrated that two lines embedded in a random-dot stereogram appeared in two different directions when they stimulated retinally corresponding points, if the disparity gradient value of the lines was infinity relative to adjacent elements. To ensure that the two lines stimulated corresponding points, observers made vergence eye movements while maintaining the perception of the two lines in two different directions.  相似文献   

6.
Illusory figures based on local kinematics.   总被引:1,自引:0,他引:1  
N Bruno  W Gerbino 《Perception》1991,20(2):259-273
A new type of motion-induced illusory figure determined by local kinematic information is investigated. The new figure is induced by radial line patterns subjected to either figure motion (the lines change as if they were stationary and a triangle was rotating in front of them) or background motion (the lines change as if they were being rotated behind a stationary triangle). Although the two kinds of motion are equivalent from the viewpoint of relative displacements, perceptually they yield very different results. With background motion, observers tend to perceive rigid figures that have a triangular shape. With figure motion, observers report seeing deforming figures with shapes that vary depending on the number of lines in the display. We consider two alternative accounts for this asymmetry which we term the background superiority effect (BSE). The first account proposes that the effect is due to retinal persistence and to figure stability. Against this line of explanation, we demonstrate that observers also see rigid triangular shapes in displays where both the figure and the radial lines rotate (double motion displays). The second account proposes that the effect depends on the availability of local kinematic information constraining contour orientation. This second line of explanation is consistent with observers' reports of bowed edges in double motion displays rotating in phase or in counterphase. Candidate mechanisms for extracting local kinematic information are discussed.  相似文献   

7.
Two experiments presented motion disparity conflicting with binocular disparity to examine how these cues determined apparent depth order (convex, concave) and depth magnitude. In each experiment, 8 subjects estimated the depth order and depth magnitude. The first experiment showed the following. (1) The visual system used one of these cues exclusively in selecting a depth order for each display. (2) The visual system integrated the depth magnitude information from these cues by a weighted additive fashion if it selected the binocular disparity in depth order perception and if the depth magnitude specified by motion disparity was small relative to that specified by binocular disparity. (3) The visual system ignored the depth magnitude information of binocular disparity if it selected the motion disparity in depth order perception. The second experiment showed that these three points were consistent whether the subject’s head movement or object movement generated motion disparity.  相似文献   

8.
Feresin C  Agostini T 《Perception》2007,36(2):258-267
The perceived inclination of slopes is generally overestimated. We claim that overestimation depends on the use of impoverished stimuli and on the distance between the observer and an inclined surface. In experiment 1, participants reported the perceived inclination of a set of urban roads from two different viewing distances. Observers did not overestimate the perceived inclination of slopes when they saw roads from the shorter viewing distances, whereas they slightly overestimated the perceived inclination of slopes from the farther distance. In experiment 2, participants reported the perceived inclination of a set of stereoscopic slides representing the same urban roads as in experiment 1. Here, observers did not overestimate the perceived inclination of slopes when the projected stereoscopic image contained horizontal disparity and simulated the shorter viewing distance; while they revealed a slight overestimation from the farther distance. We found always overestimation when the binocular image did not contain horizontal disparity, independently from the viewing distance. In conclusion, slopes are overestimated when (a) horizontal disparity is absent, and (b) the viewing distance is increased.  相似文献   

9.
In two experiments, we investigated the ability of younger and older observers to perceive and discriminate 3-D shape from static and dynamic patterns of binocular disparity. In both experiments, the younger observers' discrimination accuracies were 20% higher than those of the older observers. Despite this quantitative difference, in all other respects the older observers performed similarly to the younger observers. Both age groups were similarly affected by changes in the magnitude of binocular disparity, by reductions in binocular correspondence, and by increases in the speed of stereoscopic motion. In addition, observers in both age groups exhibited an advantage in performance for dynamic stereograms when the patterns of binocular disparity contained significant amounts of correspondence "noise." The process of aging does affect stereopsis, but the effects are quantitative rather than qualitative.  相似文献   

10.
Crowell JA  Andersen RA 《Perception》2001,30(12):1465-1488
The pattern of motion in the retinal image during self-motion contains information about the person's movement. Pursuit eye movements perturb the pattern of retinal-image motion, complicating the problem of self-motion perception. A question of considerable current interest is the relative importance of retinal and extra-retinal signals in compensating for these effects of pursuit on the retinal image. We addressed this question by examining the effect of prior motion stimuli on self-motion judgments during pursuit. Observers viewed 300 ms random-dot displays simulating forward self-motion during pursuit to the right or to the left; at the end of each display a probe appeared and observers judged whether they would pass left or right of it. The display was preceded by a 300 ms dot pattern that was either stationary or moved in the same direction as, or opposite to, the eye movement. This prior motion stimulus had a large effect on self-motion judgments when the simulated scene was a frontoparallel wall (experiment 1), but not when it was a three-dimensional (3-D) scene (experiment 2). Corresponding simulated-pursuit conditions controlled for purely retinal motion aftereffects, implying that the effect in experiment 1 is mediated by an interaction between retinal and extra-retinal signals. In experiment 3, we examined self-motion judgments with respect to a 3-D scene with mixtures of real and simulated pursuit. When real and simulated pursuits were in opposite directions, performance was determined by the total amount of pursuit-related retinal motion, consistent with an extra-retinal 'trigger' signal that facilitates the action of a retinally based pursuit-compensation mechanism. However, results of experiment 1 without a prior motion stimulus imply that extra-retinal signals are more informative when retinal information is lacking. We conclude that the relative importance of retinal and extra-retinal signals for pursuit compensation varies with the informativeness of the retinal motion pattern, at least for short durations. Our results provide partial explanations for a number of findings in the literature on perception of self-motion and motion in the frontal plane.  相似文献   

11.
Bravo MJ  Farid H 《Perception》2001,30(7):819-832
Do judgments of texture similarity reflect surface texture or image texture? To find out, we had observers view a rectangular surface that was folded into three panels, much like a brochure. Each panel was textured with an oriented noise pattern and the observers' task was to determine which side panel matched the center panel in surface texture. Information about surface geometry was conveyed by binocular disparity and by the boundaries of the rectangular surface. We found that observers were often consistently wrong, selecting the texture that differed in the image and not on the surface. In sharp contrast, when observers judged the texture orientation on each panel individually, their judgments were accurate reflections of the surface texture. So even when observers can recover surface texture, their judgments of texture similarity may still be based on image texture.  相似文献   

12.
Theoretical investigations of structure from motion have demonstrated that an ideal observer can discriminate rigid from nonrigid motion from two views of as few as four points. We report three experiments that demonstrate similar abilities in human observers: In one experiment, 4 of 6 subjects made this discrimination from two views of four points; the remaining subjects required five points. Accuracy in discriminating rigid from nonrigid motion depended on the amount of nonrigidity (variance of the interpoint distances over views) in the nonrigid structure. The ability to detect a rigid group dropped sharply as noise points (points not part of the rigid group) were added to the display. We conclude that human observers do extremely well in discriminating between nonrigid and fully rigid motion, but that they do quite poorly at segregating points in a display on the basis of rigidity.  相似文献   

13.
It has been established that the motion in depth of stimuli visible to both eyes may be signalled binocularly either by a change of disparity over time or by the difference in the velocity of the images projected on each retina, known as an interocular velocity difference. A two-interval forced-choice stereomotion speed discrimination experiment was performed on four participants to ascertain the relative speed of a persistent random dot stereogram (RDS) and a dynamic RDS undergoing directly approaching or receding motion in depth. While the persistent RDS pattern involved identical dot patterns translating in opposite directions in each eye, and hence included both changing disparity and interocular velocity difference cues, the dynamic RDS pattern (which contains no coherent monocular motion signals) specified motion in depth through changing disparity, but no motion through interocular velocity difference. Despite an interocular velocity difference speed signal of zero motion in depth, the dynamic RDS stimulus appeared to move more rapidly. These observations are consistent with a scheme in which cues that rely on coherent monocular motion signals (such as looming and the interocular velocity difference cue) are less influential in dynamic stimuli due to their lack of reliability (i.e., increased noise). While dynamic RDS stimuli may be relatively unaffected by the contributions of such cues when they signal that the stimulus did not move in depth, the persistent RDS stimulus may retain a significant and conflicting contribution from the looming cue, resulting in a lower perceived speed.  相似文献   

14.
The ability to localize a visual target and to estimate the distance through which it moves was studied during ocular pursuit. In the first experiment observers had to localize the position of a visually tracked moving target when they heard an acoustic signal. The signal was sounded near the beginning or near the end of the motion. The distance between the perceived positions was shorter than the distance between the corresponding physical positions of the target. The 'shortening' became more pronounced with higher tracking velocity. In another condition the observers estimated the length of the motion path between two successive sound signals, one presented near the beginning and one near the end of the motion. The length of path travelled was underestimated, the effect being stronger with higher tracking velocity. In the second experiment this effect of velocity on the underestimation of distance was shown to exist only during ocular pursuit and not during steady fixation. The hypothesis that localization and estimation of distance during ocular pursuit share a common mechanism is discussed.  相似文献   

15.
For 35 to 39 days, four observers wore continuously left-right reversing spectacles which pseudoscopically reverse the order of binocular disparity and direction of convergence. In three tests, we investigated how the visual system copes with the transformation of depth and distance information due to the reversing spectacles. In stereogram observation, after a few days of wearing the spectacles. the observers sometimes perceived a depth order which was opposite to the depth order that they had perceived in the pre-spectacle-wearing period. Monocular depth cues contributed more to depth perception in the spectacle-wearing period than they did in the pre-spectacle-wearing period. While the perceived distance significantly decreased during the spectacle-wearing period, we found no evidence of adaptive change in distance perception. The results indicate that the visual system adapts itself to the transformed situation by not only changing the processing of disparity but also by changing the relative efficiency of each cue in determining apparent depth.  相似文献   

16.
Poom L  Börjesson E 《Perception》2005,34(10):1193-1203
We measured how different cues are combined in motion-segregation processes by using motion stimuli where randomly distributed target dots were organised in global revolving motion while the remaining noise dots performed random motion. Target dots were cued with a different colour, polarity, disparity depth, or texture orientation than the noise dots, or they were the same as the noise dots. The stimuli were presented with a prolonged static cue preview which provided position cues to target dots or, briefly with static pre-target and post-target noise frames, which provided false position cues (no preview). All cues efficiently facilitated global motion segregation in cued-preview conditions. Colour completely failed to facilitate global motion segregation in no-preview conditions. Polarity and disparity facilitated segregation in no-preview conditions, although sensitivities were lower than in the preview conditions. Remarkably, texture orientation largely facilitated motion segregation by the same amount in both cued-preview and no-preview conditions. So, colour provides only position cues to the motion-segregation task whereas texture orientation, disparity, and to a lesser extent polarity are integrated with the segregation process.  相似文献   

17.
Vuong QC  Tarr MJ 《Perception》2006,35(4):497-510
The spatiotemporal pattern projected by a moving object is specific to that object, as it depends on both the shape and the dynamics of the object. Previous research has shown that observers learn to make use of this spatiotemporal signature to recognize dynamic faces and objects. In two experiments, we assessed the extent to which the structural similarity of the objects and the presence of spatiotemporal noise affect how these signatures are learned and subsequently used in recognition. Observers first learned to identify novel, structurally distinctive or structurally similar objects that rotated with a particular motion. At test, each learned object moved with its studied motion or with a non-studied motion. In the non-studied motion condition we manipulated either dynamic information alone (experiment 1) or both static and dynamic information (experiment 2). Across both experiments we found that changing the learned motion of an object impaired recognition performance when 3-D shape was similar or when the visual input was noisy during learning. These results are consistent with the hypothesis that observers use learned spatiotemporal signatures and that such information becomes progressively more important as shape information becomes less reliable.  相似文献   

18.
Shim J  Carlton LG  Kim J 《Perception》2004,33(3):277-291
It has been shown that human observers can estimate the weight of a box from the observation of a point-light display of a lifting motion. We asked observers to report the weight of the box and the effort produced by five lifters ranging in size and strength to determine if observers can perceive lifter size. In experiment 1, five or six weights from each of five lifters were shown to fourteen observers in a random order. Observers showed less error in estimating the amount of effort each lifter produced than in estimating the actual weight of the box. In experiment 2, the lifters were presented individually to forty observers to remove any effect observing a previous lift might have had on estimating the subsequent lift by a different lifter. The results showed an improvement in estimated weight but not in estimated effort. In experiment 3, the actual size of the lifters was given to thirty-four observers, and the estimations of both weight and effort improved. In experiment 4, observers did not improve when observing practice trials and estimating either only weight or only effort. The results from the four experiments suggest that observers are more sensitive to lifter's effort than to the weight lifted, and that observers tend to use changes in the velocity profile of the lift when making their estimates.  相似文献   

19.
Brief apparent motion sequences were introduced into a dynamic visual dot display by spatially shifting selected dots between successive frames. This causes the display to look as if it is drifting continuously in one direction. When such a display is observed with an interocular delay the drifting dots appear to be displaced in depth, even though there is no conventional retinal disparity in the display. We found that the magnitude of this depth shift increased with the duration of the apparent motion sequences. With sequences of five or more frames duration the depth effect was very similar to that which would have been predicted with a continuously moving target. With briefer sequences the size of the depth effect decreased rapidly. We suggest that apparent motion cascades form the basis of Tyler's dynamic visual noise stereophenomenon, and we question his “random spatial disparity” hypothesis.  相似文献   

20.
We study the capacities of human observers to time order light sources that emit dynamic noise, identical for the different light sources, except for an adjustable delay. There is a range of temporal delays for which human observers are perfectly able to perform this task, using the direction of the motion percept that is evoked by the stimulus as a cue. An optimal delay between light sources at which the observers are most robust against any deterioration of the stimulus is defined. We claim that optimal delays (15–25 msec) correspond to the time delay of a putative Reichardt correlation mechanism in human motion vision. Contrary to the ability of human observers to sense temporal correlations in noise sequences, observers are totally unable to detect anticorrelation between noise sequences. This inability rules out motion opponency as a viable model for human front-end (“early”) motion vision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号