首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
De Winter J  Wagemans J 《Perception》2008,37(2):245-270
Attneave (1954 Psychological Review 61 183-193) demonstrated that a line drawing of a sleeping cat can still be identified when the smoothly curved contours are replaced by straight-line segments connecting the positive maxima and negative minima of contour curvature. Using the set of line drawings by Snodgrass and Vanderwart (1980 Journal of Experimental Psychology: Human Learning and Memory 6 174-215) we made outline versions (with known curvature values along the contour) that can still be identified and that can be used to test Attneave's demonstration more systematically and more thoroughly. In five experiments (with 444 subjects in total), we tested identifiability of straight-line versions of 184 stimuli with different selections of points to be connected (using 24 to 28 subjects per stimulus per condition). Straight-line versions connecting curvature extrema were easier to identify than those based on inflections (where curvature changes sign), and those connecting salient points (determined by 161 independent subjects) were easier than those connecting midpoints. However, identification varied considerably between objects: some were almost always identifiable and others almost never, regardless of the selection criterion, whereas identifiability depended on the specific shape attributes preserved in the straight-line version of the outline in other objects. Results are discussed in relation to Attneave's original hypotheses as well as in the light of more recent theories on shape perception and object identification.  相似文献   

2.
Norman JF  Dawson TE  Raines SR 《Perception》2000,29(2):135-148
In this study of the informativeness of shadows for the perception of object shape, observers viewed shadows cast by a set of natural solid objects and were required to discriminate between them. In some conditions the objects underwent rotation in depth while in other conditions they remained stationary, thus producing both deforming and static shadows. The orientation of the light source casting the shadows was also varied, leading to further alterations in the shape of the shadows. When deformations in the shadow boundary were present, the observers were able to reliably recognize and discriminate between the objects, invariant over the shadow distortions produced by movements of the light source. The recognition performance for the static shadows depended critically upon the content of the specific views that were shown. These results support the idea that there are invariant features of shadow boundaries that permit the recognition of shape (cf Koenderink, 1984 Perception 13 321-330).  相似文献   

3.
In a natural environment, cast shadows abound. Objects cast shadows both upon themselves and upon background surfaces. Previous research on the perception of 3-D shape from cast shadows has only examined the informativeness of shadows cast upon flat background surfaces. In outdoor environments, however, background surfaces often possess significant curvature (large rocks, trees, hills, etc.), and this background curvature distorts the shape of cast shadows. The purpose of this study was to determine the extent to which observers can “discount” the distorting effects of curved background surfaces. In our experiments, observers viewed deforming or static shadows of naturally shaped objects, which were cast upon flat and curved background surfaces. The results showed that the discrimination of 3-D object shape from cast shadows was generally invariant over the distortions produced by hemispherical background surfaces. The observers often had difficulty, however, in identifying the shadows cast onto saddle-shaped background surfaces. The variations in curvature which occur in different directions on saddle-shaped background surfaces cause shadow distortions that lead to difficulties in object recognition and discrimination.  相似文献   

4.
De Winter J  Wagemans J 《Cognition》2006,99(3):275-325
In this study, a large number of observers (N=201) were asked to segment a collection of outlines derived from line drawings of everyday objects (N=88). This data set was then used as a benchmark to evaluate current models of object segmentation. All of the previously proposed rules of segmentation were found supported in our results. For example, minima of curvature (i.e. locations along the contour where negative curvature takes an extreme value) were often used as segmentation points. The second point of a pair connected by a segmentation line often depended on more global shape characteristics such as proximity, collinearity, symmetry, and elongation. Based on these results, a framework is presented in which all of the previously proposed (and now empirically validated) segmentation rules or rules for part formation are integrated.  相似文献   

5.
Morphogenesis—or the origin of complex natural form—has long fascinated researchers from practically every branch of science. However, we know practically nothing about how we perceive and understand such processes. Here, we measured how observers visually infer shape-transforming processes. Participants viewed pairs of objects (‘before’ and ‘after’ a transformation) and identified points that corresponded across the transformation. This allowed us to map out in spatial detail how perceived shape and space were affected by the transformations. Participants’ responses were strikingly accurate and mutually consistent for a wide range of non-rigid transformations including complex growth-like processes. A zero-free-parameter model based on matching and interpolating/extrapolating the positions of high-salience contour features predicts the data surprisingly well, suggesting observers infer spatial correspondences relative to key landmarks. Together, our findings reveal the operation of specific perceptual organization processes that make us remarkably adept at identifying correspondences across complex shape-transforming processes by using salient object features. We suggest that these abilities, which allow us to parse and interpret the causally significant features of shapes, are invaluable for many tasks that involve ‘making sense’ of shape.  相似文献   

6.
A single experiment investigated how younger (aged 18-32 years) and older (aged 62-82 years) observers perceive 3D object shape from deforming and static boundary contours. On any given trial, observers were shown two smoothly-curved objects, similar to water-smoothed granite rocks, and were required to judge whether they possessed the "same" or "different" shape. The objects presented during the "different" trials produced differently-shaped boundary contours. The objects presented during the "same" trials also produced different boundary contours, because one of the objects was always rotated in depth relative to the other by 5, 25, or 45 degrees. Each observer participated in 12 experimental conditions formed by the combination of 2 motion types (deforming vs. static boundary contours), 2 surface types (objects depicted as silhouettes or with texture and Lambertian shading), and 3 angular offsets (5, 25, and 45 degrees). When there was no motion (static silhouettes or stationary objects presented with shading and texture), the older observers performed as well as the younger observers. In the moving object conditions with shading and texture, the older observers' performance was facilitated by the motion, but the amount of this facilitation was reduced relative to that exhibited by the younger observers. In contrast, the older observers obtained no benefit in performance at all from the deforming (i.e., moving) silhouettes. The reduced ability of older observers to perceive 3D shape from motion is probably due to a low-level deterioration in the ability to detect and discriminate motion itself.  相似文献   

7.
The aim of this large-scale study was to find out which points along the contour of a shape are most salient and why. Many subjects (N=161) were asked to mark salient points on contour stimuli, derived from a large set of line drawings of everyday objects (N=260). The database of more than 200,000 marked points was analyzed extensively to test the hypothesis, first formulated by Attneave (1954), that curvature extrema are most salient. This hypothesis was confirmed by the data: Highly salient points are usually very close to strong curvature extrema (positive maxima and negative minima). However, perceptual saliency of points along the contour is determined by more factors than just local absolute curvature. This was confirmed by an extensive correlational analysis of perceptual saliency in relation to ten different stimulus factors. A point is more salient when the two line segments connecting it with its two neighboring salient points make a sharp turning angle and when the 2-D part defined by the triplet of salient points is less compact and sticks out more.  相似文献   

8.
We asked subjects to match points on the surface of a smooth three-dimensional (3-D) shape with points on the surface of another object that was geometrically identical to the first object but was placed in a different pose, was differently textured, and was differently shaded. In all cases, the fiducial point was on the rim of one of the objects (i.e., the boundary of the visible region of the surface), whereas the matching point was well within the silhouette of the other object. This allowed us to draw (preliminary) conclusions concerning the way monocular human observers are able to handle the neighborhood of the rim, where the local slant assumes arbitrarily high values. All experiments were done in real space with real objects (no computer-simulated scenes), the points being indicated with laser beam illumination. The subject was given control over the direction of the laser beams and was thus able to perform the task by adjustment from the vantage position. We studied both consistency (whether the subject’s judgments were invariant against changes of relative pose) and veridicality (whether the depth of the visual contour as calculated from the settings agreed with the true distance as measured by mechanical means). Subjects caught much of the 3-D structure of the contour but did deviate appreciably and apparently idiosyncratically from the true geometry.  相似文献   

9.
Lightness constancy in complex scenes requires that the visual system take account of information concerning variations of illumination falling on visible surfaces. Three experiments on the perception of lightness for three-dimensional (3-D) curved objects show that human observers are better able to perform this accounting for certain scenes than for others. The experiments investigate the effect of object curvature, illumination direction, and object shape on lightness perception. Lightness constancy was quite good when a rich local gray-level context was provided. Deviations occurred when both illumination and reflectance changed along the surface of the objects. Does the perception of a 3-D surface and illuminant layout help calibrate lightness judgments? Our results showed a small but consistent improvement between lightness matches on ellipsoid shapes, relative to flat rectangle shapes, under illumination conditions that produce similar image gradients. Illumination change over 3-D forms is therefore taken into account in lightness perception.  相似文献   

10.
Estimating the pose (three-dimensional orientation) of objects is an important aspect of 3-D shape perception. We studied the ability of observers to match the pose of the principal axes of an object with the pose of a cross consisting of three perpendicular axes. For objects, we used a long and a flat spheroid and eight symmetric objects with aspect ratios of dimensions of approximately 4:2:1. Stimulus cues were the contour and stereo for the spheroids, and contour, stereo, and shading for the symmetric objects. In addition, the spheroids were shown with or without surface texture and with or without active motion. Results show that observers can perform the task with standard deviations of a few degrees, though biases could be as large as 30 degrees. The results can be naturally decomposed in viewer-centered coordinates, and it turns out that the estimation of orientation in the frontoparallel plane (tilt) is more precise than estimation of orientation in depth (slant, roll). A comparison of long and flat spheroids shows that sticks lead to better performance than do slabs. This can even be the case within the same object; the pose of the stick-like aspect is seen with more precision than is the pose of the slab-like aspect. The largest biases occurred when the spheroids were displayed with the binocular contour as the only cue. We can explain these biases by assuming that subjects' settings are influenced by the orientation of the rim.  相似文献   

11.
The shape of holes can be recognized as accurately as the shape of objects (Palmer, S. E. (1999). Vision science: photons to phenomenology. Cambridge, MA: MIT Press), yet the area enclosed by a hole is a background region, and it can be demonstrated that background regions are not represented as having shape. What is therefore the shape of a hole, if any? To resolve this apparent paradox, we suggest that the shape of a hole is available indirectly from the shape of the surrounding object. We exploited the fact that observers are faster at judging the position of convex vertices than concave ones (Perception 30 (2001) 1295), and using a figural manipulation of figure/ground we found a reversal of the relative speeds when the same contours were presented as holes instead of objects. If contours were perceived as belonging to the hole rather than the surrounding object then there would have been no qualitative difference in responses to the object and hole stimuli. We conclude that the contour bounding a hole is automatically assigned to the surrounding object, and that a change in perception of a region from object to hole always drastically changes the encoded information. We discuss the many interesting aspects of holes as a subject of study in different disciplines and predict that much insight especially about shape will continue to come from holes.  相似文献   

12.
Abstract

A priming paradigm was used to investigate the contribution of local features and global shape information in object recognition. Five types of incomplete forms were used as primes: (1) forms with both maxima (local curvature) and midsegments of edges present and aligned on the outline contour; (2) forms similar in global shape to the first version of stimuli, but with misaligned elements; (3) forms with only maxima; (4) forms with only midsegments of edges; and (5) forms containing 3D comer junctions (in Experiments 3 and 4). The target was an outline drawing of an object from which the incomplete prime was derived. Subjects were asked to name the target as rapidly as possible. Primes were presented at levels of contrast corresponding to identification thresholds, as well as above and below threshold levels (determined in Experiments 1 and 3). Facilitation effects relative to a neutral (no prime) condition occurred at threshold and above threshold for primes with aligned elements, forms with only maxima, and forms with only midsegments. Priming occurred only above threshold for forms with non-aligned elements. In Experiment 4 the presence of 3D local features increased the magnitude of priming relative to forms with midsegments and to forms with flat corners (in Experiment 2). This result suggests that 3D features facilitate object identification either because objects are stored in the form of volumetric entities or because 3D features are extracted early in visual processing.  相似文献   

13.
The visual system seems to integrate information that is presented over time in a spatially fragmented fashion, with the result that observers are able to report the whole shape of objects. This research considers relations in space and time that allow the integrated percepts of complete objects. Specifically, temporal characteristics for spatiotemporal integration of illusory contour and spatial characteristics of interpolated contour are examined. A serial presentation paradigm and a dot localization task were used in two experiments; observers localized a probe dot relative to a perceived contour of an illusory object. Each of four inducing figures was briefly presented in a serial order to observers and the total time of the series was manipulated. In Experiment 1 short time ranges varied up to 180 ms, whereas longer times were examined in Experiment 2. Overall, the results demonstrate that a short time allows spatiotemporal integration, and that the perceived location of contour consistently shifts with time range. These experiments suggest that the mechanism of spatiotemporal integration operates on spatial integration as a limiting case.  相似文献   

14.
This study presents a new powerful visual illusion, in which simple “open” objects—ones with missing boundaries—are perceived as bigger than the same size, fully “closed” objects. In a series of experiments that employed a continuous-response adjustment procedure, it was found that the lack of vertical boundaries inflated the perceived width of an object, whereas the lack of horizontal boundaries inflated its perceived length. The effect was highly robust and it was replicated across different stimulus types and experimental parameters, with almost all observers exhibiting a strong effect. In contrast to the overestimation of the size of an object due to missing boundaries, the inclusion of inner boundaries within an object caused observers to underestimate its size, suggesting that filled space sometimes shrinks, rather than inflates, the perceived size of an object. The open-object illusion bears practical implications for graphics and design as well as important theoretical implications. Specifically, it indicates that the perception of an object’s area is not veridical but rather critically depends on contour closure. It is suggested that the visual system extends the missing boundaries of open contour objects, which results in an overestimation of the object’s size.  相似文献   

15.
Although Attneave (1954 Psychological Review 61 183 193) and Biederman (1987 Psychological Review 94 115-147) have argued that curved contour segments are most important in shape perception, Kennedy and Domander (1985 Perception 14 367-370) showed that fragmented object contours are better identifiable when straight segments are shown. We used the set of line drawings published by Snodgrass and Vanderwart (1980 Journal of Experimental Psychology: Human Learning and Memory 6 174-215), to make outline versions that could be used to investigate this issue with a larger and more heterogeneous stimulus set. Fragments were placed either around the 'salient' points or around the midpoints (points midway between two salient points), creating curved versus relatively straight fragments when the original outline was fragmented (experiment 1), or angular and straight fragments when straight-line versions were fragmented (experiment 2). We manipulated fragment length in each experiment except the last one, in which we presented only selected points (experiment 3). While fragmented versions were on average more identifiable when straight fragments were shown, certain objects were more identifiable when the curved segments or the angles were shown. A tentative explanation of these results is presented in terms of an advantage for straight segments during grouping processes for outlines with high part salience, and an advantage for curved segments during matching processes for outlines with low part salience.  相似文献   

16.
Humans are remarkably efficient in detecting highly familiar object categories in natural scenes, with evidence suggesting that such object detection can be performed in the (near) absence of attention. Here we systematically explored the influences of both spatial attention and category-based attention on the accuracy of object detection in natural scenes. Manipulating both types of attention additionally allowed for addressing how these factors interact: whether the requirement for spatial attention depends on the extent to which observers are prepared to detect a specific object category—that is, on category-based attention. The results showed that the detection of targets from one category (animals or vehicles) was better than the detection of targets from two categories (animals and vehicles), demonstrating the beneficial effect of category-based attention. This effect did not depend on the semantic congruency of the target object and the background scene, indicating that observers attended to visual features diagnostic of the foreground target objects from the cued category. Importantly, in three experiments the detection of objects in scenes presented in the periphery was significantly impaired when observers simultaneously performed an attentionally demanding task at fixation, showing that spatial attention affects natural scene perception. In all experiments, the effects of category-based attention and spatial attention on object detection performance were additive rather than interactive. Finally, neither spatial nor category-based attention influenced metacognitive ability for object detection performance. These findings demonstrate that efficient object detection in natural scenes is independently facilitated by spatial and category-based attention.  相似文献   

17.
In five experiments, we investigated the detection of symmetry (i.e., translation plus reflection) or repetition (i.e., translation alone) between two vertical jagged contours. The complexity of the two contours was manipulated, as was their figure-ground assignment; the two contours either belonged to a common object "inside" them, to two separate objects "outside" them, or to two separate objects each to the right of one contour. Replicating Baylis and Driver (1994), symmetry judgements were unaffected by contour complexity when made within a single shape, implying a parallel process operating efficiently across contour discontinuities. However, all the other conditions yielded substantially slower judgements as complexity increased, suggesting either effortful point-by-point comparisons, or a highly inefficient parallel process. In agreement with Baylis and Driver (1995a), symmetry perception was harder when figure-ground assignment turned convexities along one contour into concavities along the other contour; and likewise for repetition detection. However, even when convex parts matched between the two contours, judgements were still affected by complexity unless they belonged to a common object. This supports Baylis and Driver's (1993) proposal that effortless comparisons for the layout of multiple convex parts can only be made within single perceptual objects.  相似文献   

18.
Haptic curvature comparison of convex and concave shapes   总被引:1,自引:0,他引:1  
A sculpture and the mould in which it was formed are typical examples of objects with an identical, but opponent, surface shape: each convex (ie outward pointing) surface part of a sculpture has a concave counterpart in the mould. The question arises whether the object features of opponent shapes can be compared by touch. Therefore, we investigated whether human observers were able to discriminate the curvatures of convex and concave shapes, irrespective of whether the shape was convex or concave. Using a 2AFC procedure, subjects had to compare the curvature of a convex shape to the curvature of a concave shape. In addition, results were also obtained for congruent shapes, when the curvature of either only convex shapes or only concave shapes had to be compared. Psychometric curves were fitted to the data to obtain threshold and bias results. When subjects explored the stimuli with a single index finger, significantly higher thresholds were obtained for the opponent shapes than for the congruent shapes. However, when the stimuli were touched by two index fingers, one finger per surface, we found similar thresholds. Systematic biases were found when the curvature of opponent shapes was compared: the curvature of a more curved convex surface was judged equal to the curvature of a less curved concave surface. We conclude that human observers had the ability to compare the curvature of shapes with an opposite direction, but that their performance decreased when they sensed the opponent surfaces with the same finger. Moreover, they systematically underestimated the curvature of convex shapes compared to the curvature of concave shapes.  相似文献   

19.
What does the occluding contour tell us about solid shape?   总被引:5,自引:0,他引:5  
J J Koenderink 《Perception》1984,13(3):321-330
A new theorem is discussed that relates the apparent curvature of the occluding contour of a visual shape to the intrinsic curvature of the surface and the radial curvature. This theorem allows the formulation of general laws for the apparent curvature, independent of viewing distance and regardless of the fact that the rim (the boundary between the visible and invisible parts of the object) is a general, thus twisted, space curve. Consequently convexities, concavities, or inflextions of contours in the retinal image allow the observer to draw inferences about local surface geometry with certainty. These results appear to be counterintuitive, witness to the treatment of the problem by recent authors. It is demonstrated how well-known examples, used to show how concavities and convexities of the contour have no obvious relation to solid shape, are actually good illustrations of the fact that convexities are due to local ovoid shapes, concavities to local saddle shapes.  相似文献   

20.
One hundred observers participated in two experiments designed to investigate aging and the perception of natural object shape. In the experiments, younger and older observers performed either a same/different shape discrimination task (experiment 1) or a cross-modal matching task (experiment 2). Quantitative effects of age were found in both experiments. The effect of age in experiment 1 was limited to cross-modal shape discrimination: there was no effect of age upon unimodal (ie within a single perceptual modality) shape discrimination. The effect of age in experiment 2 was eliminated when the older observers were either given an unlimited amount of time to perform the task or when the number of response alternatives was decreased. Overall, the results of the experiments reveal that older observers can effectively perceive 3-D shape from both vision and haptics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号