首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Le Corre M  Carey S 《Cognition》2007,105(2):395-438
Since the publication of [Gelman, R., & Gallistel, C. R. (1978). The child's understanding of number. Cambridge, MA: Harvard University Press.] seminal work on the development of verbal counting as a representation of number, the nature of the ontogenetic sources of the verbal counting principles has been intensely debated. The present experiments explore proposals according to which the verbal counting principles are acquired by mapping numerals in the count list onto systems of numerical representation for which there is evidence in infancy, namely, analog magnitudes, parallel individuation, and set-based quantification. By asking 3- and 4-year-olds to estimate the number of elements in sets without counting, we investigate whether the numerals that are assigned cardinal meaning as part of the acquisition process display the signatures of what we call "enriched parallel individuation" (which combines properties of parallel individuation and of set-based quantification) or analog magnitudes. Two experiments demonstrate that while "one" to "four" are mapped onto core representations of small sets prior to the acquisition of the counting principles, numerals beyond "four" are only mapped onto analog magnitudes about six months after the acquisition of the counting principles. Moreover, we show that children's numerical estimates of sets from 1 to 4 elements fail to show the signature of numeral use based on analog magnitudes - namely, scalar variability. We conclude that, while representations of small sets provided by parallel individuation, enriched by the resources of set-based quantification are recruited in the acquisition process to provide the first numerical meanings for "one" to "four", analog magnitudes play no role in this process.  相似文献   

2.
The preschool years are a time of great advances in children’s numerical thinking, most notably as they master verbal counting. The present research assessed the relation between analog magnitude representations and cardinal number knowledge in preschool-aged children to ask two questions: (1) Is there a relationship between acuity in the analog magnitude system and cardinality proficiency? (2) Can evidence of the analog magnitude system be found within mappings of number words children have not successfully mastered? To address the first question, Study 1 asked three- to five-year-old children to discriminate side-by-side dot arrays with varying differences in numerical ratio, as well as to complete an assessment of cardinality. Consistent with the analog magnitude system, children became less accurate at discriminating dot arrays as the ratio between the two numbers approached one. Further, contrary to prior work with preschoolers, a significant correlation was found between cardinal number knowledge and non-symbolic numerical discrimination. Study 2 aimed to look for evidence of the analog magnitude system in mappings to the words in preschoolers’ verbal counting list. Based on a modified give-a-number task ( [Wynn, 1990] and [Wynn, 1992] ), three- to five-year-old children were asked to give quantities between 1 and 10 as many times as possible in order to assess analog magnitude variability within their developing cardinality understanding. In this task, even children who have not yet induced the cardinality principle showed signs of analog representations in their understanding of the verbal count list. Implications for the contribution of analog magnitude representations towards mastery of the verbal count list are discussed in light of the present work.  相似文献   

3.
When young children attempt to locate numbers along a number line, they show logarithmic (or other compressive) placement. For example, the distance between “5” and “10” is larger than the distance between “75” and “80.” This has often been explained by assuming that children have a logarithmically scaled mental representation of number (e.g., Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, 2010 ; Siegler & Opfer, 2003 ). However, several investigators have questioned this argument (e.g., Barth & Paladino, 2011 ; Cantlon, Cordes, Libertus, & Brannon, 2009 ; Cohen & Blanc‐Goldhammer, 2011 ). We show here that children prefer linear number lines over logarithmic lines when they do not have to deal with the meanings of individual numerals (i.e., number symbols, such as “5” or “80”). In Experiments 1 and 2, when 5‐ and 6‐year‐olds choose between number lines in a forced‐choice task, they prefer linear to logarithmic and exponential displays. However, this preference does not persist when Experiment 3 presents the same lines without reference to numbers, and children simply choose which line they like best. In Experiments 4 and 5, children position beads on a number line to indicate how the integers 1–100 are arranged. The bead placement of 4‐ and 5‐year‐olds is better fit by a linear than by a logarithmic model. We argue that previous results from the number‐line task may depend on strategies specific to the task.  相似文献   

4.
The aim of this paper was to test the hypothesis of a context dependence of number processing in children. Fifth-graders were given two numbers presented successively on screen through a self-presentation procedure after being asked either to add or subtract or compare them. We considered the self-presentation time of the first number as reflecting the complexity of the encoding for a given planned processing. In line with Dehaene's triple-code model, self-presentation times were longer for additions and subtractions than for comparisons with two-digit numbers. Alternative interpretations of these results in terms of more cognitive effort or more mental preparation in the case of addition and subtraction than comparison are discussed and ruled out.  相似文献   

5.
Several studies investigating the development of approximate number representations used the number-to-position task and reported evidence for a shift from a logarithmic to a linear representation of numerical magnitude with increasing age. However, this interpretation as well as the number-to-position method itself has been questioned recently. The current study tested 5- and 8-year-old children on a newly established numerosity production task to examine developmental changes in number representations and to test the idea of a representational shift. Modelling of the children's numerical estimations revealed that responses of the 8-year-old children approximate a simple positive linear relation between estimated and actual numbers. Interestingly, however, the estimations of the 5-year-old children were best described by a bilinear model reflecting a relatively accurate linear representation of small numbers and no apparent magnitude knowledge for large numbers. Taken together, our findings provide no support for a shift of mental representations from a logarithmic to a linear metric but rather suggest that the range of number words which are appropriately conceptualised and represented by linear analogue magnitude codes expands during development.  相似文献   

6.
Precise enumeration is associated with small numerosities within the subitizing range (<4 items), while approximate enumeration is associated with large numerosities (>4 items). To date, there is still debate on whether a single continuous process or dual mutually exclusive processes mediate enumeration of small and large numerosities. Here, we evaluated a compromise between these two notions: that the precise representation of number is limited to small numerosities, but that the approximate representation of numerosity spans across both small and large numerosities. We assessed the independence of precise and approximate enumeration by looking at how luminance contrast affected enumeration of elements that differ by ones (1–8) or by tens (10–80). We found that enumeration functions of ones and tens have different characteristics, which is consistent with the presence of two number systems. Subitizing was preserved for small numerosities. However, simply decreasing element visibility changed the variability signatures of small numerosities to match those of large numerosities. Together, our results suggest that small numerosities are mediated by both precise and approximate representations of numerosity.  相似文献   

7.
Preschoolers made numerical comparisons between sets with varying degrees of shared surface similarity. When surface similarity was pitted against numerical equivalence (i.e., crossmapping), children made fewer number matches than when surface similarity was neutral (i.e, all sets contained the same objects). Only children who understood the number words for the target sets performed above chance in the crossmapping condition. These findings are consistent with previous research on children's non-numerical comparisons (e.g., [Rattermann, M. J., & Gentner, D. (1998). The effect of language on similarity: The use of relational labels improves young children's performance in a mapping task. In K. Holyoak, D. Gentner, & B. Kokinov (Eds.), Advances in analogy research: Integration of theory and data from cognitive, computational, and neural sciences (pp. 274–282). Sofia: New Bulgarian University; Smith, L. B. (1993). The concept of same. In H. W. Reese (Ed.), Advances in child development and behavior, Vol. 24 (pp. 215–252). New York: Academic Press]) and suggest that the same mechanisms may underlie numerical development.  相似文献   

8.
We present new evidence that word translation involves semantic mediation. It has been shown that participants react faster to small numbers with their left hand and to large numbers with their right hand. This SNARC (spatial-numerical association of response codes) effect is due to the fact that in Western cultures the semantic number line is oriented from left (small) to right (large). We obtained a SNARC effect when participants had to indicate the parity of second-language (L2) number words, but not when they had to indicate whether L2 number words contained a particular sound. Crucially, the SNARC effect was also obtained in a translation verification task, indicating that this task involved the activation of number magnitude.  相似文献   

9.
This paper addresses the relationship between basic numerical processes and higher level numerical abilities in normal achieving adults. In the first experiment we inferred the elementary numerical abilities of university students from the time they needed to encode numerical information involved in complex additions and subtractions. We interpreted the shorter encoding times in good arithmetic problem solvers as revealing clearer or more accessible representations of numbers. The second experiment shows that these results cannot be due to the fact that lower skilled individuals experience more maths anxiety or put more cognitive efforts into calculations than do higher skilled individuals. Moreover, the third experiment involving non-numerical information supports the hypothesis that these interindividual differences are specific to number processing. The possible causal relationships between basic and higher level numerical abilities are discussed.  相似文献   

10.
Children, aged 5 and 8 years, and adults were tested in a bisection task with a sequence of stimuli in which time and number co-varied. In a counting and a non-counting condition, they were instructed either to process the duration of this sequence while ignoring the number of stimuli (temporal bisection), or to process the number of stimuli while ignoring the duration (numerical bisection). In the temporal bisection task, number interfered with the 5-year-olds' temporal performance, indicating that young children did not process time and number independently in a sequence of stimuli when they had to attend to duration. However, number interference decreased both with age and counting strategy. In contrast, in the numerical bisection task, duration did not interfere with numerical discrimination for any age group.  相似文献   

11.
12.
When children learn to count and acquire a symbolic system for representing numbers, they map these symbols onto a preexisting system involving approximate nonsymbolic representations of quantity. Little is known about this mapping process, how it develops, and its role in the performance of formal mathematics. Using a novel task to assess children’s mapping ability, we show that children can map in both directions between symbolic and nonsymbolic numerical representations and that this ability develops between 6 and 8 years of age. Moreover, we reveal that children’s mapping ability is related to their achievement on tests of school mathematics over and above the variance accounted for by standard symbolic and nonsymbolic numerical tasks. These findings support the proposal that underlying nonsymbolic representations play a role in children’s mathematical development.  相似文献   

13.
Calibrating the mental number line   总被引:1,自引:0,他引:1  
Izard V  Dehaene S 《Cognition》2008,106(3):1221-1247
Human adults are thought to possess two dissociable systems to represent numbers: an approximate quantity system akin to a mental number line, and a verbal system capable of representing numbers exactly. Here, we study the interface between these two systems using an estimation task. Observers were asked to estimate the approximate numerosity of dot arrays. We show that, in the absence of calibration, estimates are largely inaccurate: responses increase monotonically with numerosity, but underestimate the actual numerosity. However, insertion of a few inducer trials, in which participants are explicitly (and sometimes misleadingly) told that a given display contains 30 dots, is sufficient to calibrate their estimates on the whole range of stimuli. Based on these empirical results, we develop a model of the mapping between the numerical symbols and the representations of numerosity on the number line.  相似文献   

14.
Researchers have long disagreed about whether number concepts are essentially continuous (unchanging) or discontinuous over development. Among those who take the discontinuity position, there is disagreement about how development proceeds. The current study addressed these questions with new quantitative analyses of children’s incorrect responses on the Give-N task. Using data from 280 children, ages 2 to 4 years, this study showed that most wrong answers were simply guesses, not counting or estimation errors. Their mean was unrelated to the target number, and they were lower-bounded by the numbers children actually knew. In addition, children learned the number-word meanings one at a time and in order; they treated the number words as mutually exclusive; and once they figured out the cardinal principle of counting, they generalized this principle to the rest of their count list. Findings support the ‘discontinuity’ account of number development in general and the ‘knower-levels’ account in particular.  相似文献   

15.
Santens S  Verguts T 《Cognition》2011,(1):94-110
When comparing digits of different physical sizes, numerical and physical size interact. For example, in a numerical comparison task, people are faster to compare two digits when their numerical size (the relevant dimension) and physical size (the irrelevant dimension) are congruent than when they are incongruent. Two main accounts have been put forward to explain this size congruity effect. According to the shared representation account, both numerical and physical size are mapped onto a shared analog magnitude representation. In contrast, the shared decisions account assumes that numerical size and physical size are initially processed separately, but interact at the decision level. We implement the shared decisions account in a computational model with a dual route framework and show that this model can simulate the modulation of the size congruity effect by numerical and physical distance. Using other tasks than comparison, we show that the model can simulate novel findings that cannot be explained by the shared representation account.  相似文献   

16.
Techniques traditionally used in developmental research with infants have been widely used with nonhuman primates in the investigation of comparative cognitive abilities. Recently, researchers have shown that human infants and monkeys select the larger of two numerosities in a spontaneous forced-choice discrimination task. Here we adopt the same method to assess in a series of experiments spontaneous choice of the larger of two numerosities in a species of amphibian, red-backed salamanders (Plethodon cinereus). The findings indicate that salamanders "go for more," just like human babies and monkeys. This rudimentary capacity is a type of numerical discrimination that is spontaneously present in this amphibian. Electronic Publication  相似文献   

17.

Optimal Bayesian reasoning performance has reportedly been elusive, and a variety of explanations have been suggested for this situation. In a series of experiments, it is demonstrated that these difficulties with replication can be accounted for by differences in participant-sampling methodologies. Specifically, the best performances are obtained with students from top-tier, national universities who were paid for their participation. Performance drops significantly as these conditions are altered regarding inducements (e.g., using unpaid participants) or participant source (e.g., using participants from a second-tier, regional university). Honours-programme undergraduates do better than regular undergraduates within the same university, paid participation creates superior performance, and top-tier university students do better than students from lower ranked universities. Pictorial representations (supplementing problem text) usually have a slight facilitative effect across these participant manipulations. These results indicate that studies should take account of these methodological details and focus more on relative levels of performance rather than absolute performance.  相似文献   

18.
An essential part of understanding number words (e.g., eight) is understanding that all number words refer to the dimension of experience we call numerosity. Knowledge of this general principle may be separable from knowledge of individual number word meanings. That is, children may learn the meanings of at least a few individual number words before realizing that all number words refer to numerosity. Alternatively, knowledge of this general principle may form relatively early and proceed to guide and constrain the acquisition of individual number word meanings. The current article describes two experiments in which 116 children (2½- to 4-year-olds) were given a Word Extension task as well as a standard Give-N task. Results show that only children who understood the cardinality principle of counting successfully extended number words from one set to another based on numerosity—with evidence that a developing understanding of this concept emerges as children approach the cardinality principle induction. These findings support the view that children do not use a broad understanding of number words to initially connect number words to numerosity but rather make this connection around the time that they figure out the cardinality principle of counting.  相似文献   

19.
Three experiments involving a Stroop-like paradigm were conducted. In Experiment 1, adults received a number comparison task in which large sets of dots, orthogonally varying along a discrete dimension (number of dots) and a continuous dimension (cumulative area), were presented. Incongruent trials were processed more slowly and with less accuracy than congruent trials, suggesting that continuous dimensions such as cumulative area are automatically processed and integrated during a discrete quantity judgement task. Experiment 2, in which adults were asked to perform area comparison on the same stimuli, revealed the reciprocal interference from number on the continuous quantity judgements. Experiment 3, in which participants received both the number and area comparison tasks, confirmed the results of Experiments 1 and 2. Contrasting with earlier statements, the results support the view that number acts as a more salient cue than continuous dimensions in adults. Furthermore, the individual predisposition to automatically access approximate number representations was found to correlate significantly with adults' exact arithmetical skills.  相似文献   

20.
Two experiments examined how pigeons differentiate response patterns along the dimension of number. In Experiment 1, 5 pigeons received food after pecking the left key at least N times and then switching to the right key (Mechner's Fixed Consecutive Number schedule). Parameter N varied across conditions from 4 to 32. Results showed that run length on the left key followed a normal distribution whose mean and standard deviation increased linearly with N; the coefficient of variation approached a constant value (the scalar property). In Experiment 2, 4 pigeons received food with probability p for pecking the left key exactly four times and then switching. If that did not happen, the pigeons still could receive food by returning to the left key and pecking it for a total of at least 16 times and then switching. Parameter p varied across conditions from 1.0 to .25. Results showed that when p= 1.0 or p=.5, pigeons learned two response numerosities within the same condition. When p=.25, each pigeon adapted to the schedule differently. Two of them emitted first runs well described by a mixture of two normal distributions, one with mean close to 4 and the other with mean close to 16 pecks. A mathematical model for the differentiation of response numerosity in Fixed Consecutive Number schedules is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号