首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article describes developmental changes in gait velocity and relates these changes to gait parameters that index postural stability (step width and lateral acceleration) and two components of velocity (cadence and step length).

Five children were observed longitudinally over a 2-year period after onset of independent walking. Their range of speed increased threefold in the first 6 months of independent walking and then remained constant. In contrast, step width decreased approximately twofold. Whereas in adults, cadence and step length contribute approximately equally to speed, when infants first begin to walk independently, increase in velocity is due mostly to increased step length. After 5 months of independent walking, the pattern reverses, and increase in velocity is due primarly to increased cadence. The pattern remains constant over the next 18 months. From a developmental point of view, the data lead us to interpret early walking (the first 5 months) as a process of integration of postural constraints into the dynamic necessities of gait movement. A second phase, beginning after 4 to 5 months of independent walking, is considered to be a tuning phase characterized by a more precise adjustment of the gait parameters.  相似文献   

2.
The current profile of gait control in children with ADHD is incomplete and predominately based on children walking forward at a self-selected pace. There are no studies of potential gait deficits in this clinical population when walking in different directions in combination with varying rates of stepping that are freely selected and entrained to an external stimulus. The purpose of the current study was to address this lack of information by assessing gait of children aged 7–17 years with (n = 17) and without (n = 26) ADHD. Participants walked forward and backward along an electronically instrumented carpet at a self-selected stepping rate and in synchrony to a metronome that dictated an increased and decreased stepping rate. Using repeated measures analysis of covariance (ANCOVA) to assess spatiotemporal gait parameters, results showed that children with ADHD exhibited a significantly exaggerated, toes ‘turned out,’ foot position for all walking conditions compared to typically developing children. When walking backward, children with ADHD produced an increased step width, higher stepping cadence, and increased velocity. Additionally, coefficient of variation ratios indicated that children with ADHD produced greater variability of velocity, cadence, and step time for all walking conditions, and greater variability for stride length when walking at an increased stepping rate. Results were interpreted in terms of clinical significance and practical ramifications that inform rehabilitation specialists in designing therapies that ameliorate the reported gait deficits.  相似文献   

3.
The objective of this study was to determine (1) if a novel haptic feedback system could increase the walking speed of older adults while it is being employed during overground walking and (2) whether the frequency at which this feedback was presented would have a differential impact on the ability of users to change walking speed while it was present. Given that peak thigh extension has been found to be a biomechanical surrogate for stride length, and consequently gait speed, vibrotactile haptic feedback was provided to the participants' thighs as a cue to increase peak thigh extension while the effect on gait speed was monitored. Ten healthy community-dwelling older adults (68.4 ± 4.1 years) participated. Participants' peak thigh extension, cadence, normalized stride length and velocity, along with their coefficients of variation (COV) were compared across baseline normal and fast walking (with no feedback) and three different frequency of feedback conditions. The findings indicated that, compared to self-selected normal and fast walking speeds, peak thigh extension was significantly increased when feedback was present and after it was withdrawn in a post-test. An increase in thigh extension led to an increase in stride length and, consequently, an increase in stride velocity compared to normal speed. There were no significant differences in the gait parameters as a function of feedback frequency during its application. In conclusion, while present, the haptic feedback system increased thigh extension and walking speed in older adults regardless of the feedback frequency and when the feedback was withdrawn, participants could maintain an increase in those parameters.  相似文献   

4.
This experiment studied the effect of imposed optic flow on human locomotion. Six young and 6 older adults were exposed to various patterns of optic flow while walking in a moving hallway. Results showed few cases of impaired postural control (staggers, parachute reactions). No falls were recorded. Kinematic patterns of gait were altered when vision was absent or inconsistent optic flow was presented: Ninety two percent of the subjects' mean step velocity differed from their step velocities under normal vision. Compared with imposed central flow, peripheral optic flow was not dominant in inducing kinematic changes. Characteristic gait profiles were obtained, depending on flow direction. Global backward flow tended to slow down step velocity, whereas subjects' step velocity increased during conditions of forward flow. The results suggest that subjects attempted to match their own walking speed to the velocity of the moving visual scenes. It is concluded that in an uncluttered environment, imposed optic flow has a modulating rather than a destabilizing effect on human locomotion.  相似文献   

5.
To determine the effects of speed on gait previous studies have examined young adults walking at different speeds; however, the small number of strides may have influenced the results. The aim of this study was to investigate the immediate and long-term impact of continuous slow walking on the mean, variability and structure of stride-to-stride measures. Fourteen young adults walked at a constant pace on a treadmill at three speeds (preferred walking speed (PWS), 90% and 80% PWS) for 30 min each. Spatiotemporal gait parameters were computed over six successive 5-min intervals. Walking slower significantly decreased stride length, while stride period and width increased. Additionally, stride period and width variability increased. Signal regularity of stride width increased and decreased in stride period. Persistence of stride period and width increased significantly at slower speeds. While several measures changed during 30 min of walking, only stride period variability and signal regularity revealed a significant speed and time interaction. Healthy young adults walking at slower than preferred speeds demonstrated greater persistence and signal regularity of stride period while spatiotemporal changes such as increased stride width and period variability arose. These results suggest that different control processes are involved in adapting to the slower speeds.  相似文献   

6.
IntroductionAlthough it is known that individuals with Parkinson's disease (PD) have difficulties performing dual-task activities, most of the studies have verified the effect of dual tasks on gait using tasks that are uncommon to perform while walking. However, the realization of tasks involving gait that really represents the daily activities carried out by the participants, allow us to detect real fall risk situations of individuals with PD during their gait.ObjectiveOur aim was to verify the influence of daily-life dual-tasks on gait spatiotemporal variables of the older adults with PD.Methods20 older adults without PD and 20 older adults with PD participated in the study. Gait kinematic was analyzed under three different conditions: walking without dual task, walking carrying bags with weight, and walking talking on the cell phone.ResultsOlder adults with PD presented lower speed (p = .001), cadence (p = .039), and shorter step length (p = .028) than older adults without PD during walking without dual tasks. When walking while carrying bags with weight, older adults with PD had a lower speed (p < .001), cadence (p = .015), shorter step length (p = .008), and greater double support time (p = .021) compared with older adults without PD. During walking while talking on the cell phone, older adults with PD walked with lower speed (p < .001), cadence (p = .013), shorter step length (p = .001) and swing time (p = .013), and increased double support time (p = .008) and support time (p = .014) in relation to older adults without PD.ConclusionDaily-life dual tasks impair the spatiotemporal variables of gait in the older adults with PD, which was most evident during walking talking on the cell phone.  相似文献   

7.
The aim of this paper was to study, from a developmental perspective, the transient phase of gait during the period between the standing posture and the achievement of steady state gait, using temporal and biochemical parameters. Eight children who had been walking autonomously for 90 to 200 days were observed. A total of 64 sequences of steps were analyzed. A sequence of steps began with the child standing still and was executed on a large force plate. From the determination of the instantaneous velocity of center of gravity results establish that, unlike adults, progression velocity in children end of the first step, but after two to four steps.The gait initiation process does not depend on the steady state velocity, but results from an initial fall. The duration of the movement up to the end of the first step is independent of the progression velocity but depends only upon the body mass and moment of inertia of the children.  相似文献   

8.
Cognitive-motor dual-tasking involves concurrent performance of two tasks with distinct cognitive and motor demands and is associated with increased fall risk. In this hypothesis-driven study, younger (18–30 years, n = 24) and older (60–75 years, n = 26) adults completed six walking tasks in triplicate. Participants walked forward and backward along a GAITRite mat, in isolation or while performing a verbal fluency task. Verbal fluency tasks involved verbally listing or typing on a smartphone as many words as possible within a given category (e.g., clothes). Using repeated measures MANOVA models, we examined how age, method of fluency task (verbal or texting), and direction of walking altered dual-task performance. Given that tasks like texting and backward walking require greater cognitive resources than verbal and forward walking tasks, respectively, we hypothesized older adults would show higher dual-task costs (DTCs) than younger adults across different task types and walking directions, with degree of impairment more apparent in texting dual-task trials compared to verbal dual-task trials. We also hypothesized that both age groups would have greater DTCs while walking backward than while walking forward, regardless of task.Independent of age group, velocity and stride length were reduced for texting compared to the verbal task during both forward and backward walking; cadence and velocity were reduced while walking forward compared to walking backward for the texting task; and stride length was reduced for forward walking compared to backward walking during the verbal task. Younger adults performed better than older adults on all tasks with the most pronounced differences seen in velocity and stride length during forward-texting and backward-texting. Interaction effects for velocity and stride length while walking forward indicated younger adults performed better than older adults for the texting task but similarly during the verbal task. An interaction for cadence during the verbal task indicated younger adults performed better than older adults while walking backward but similarly while walking forward.In summary, older adults experienced greater gait decrement for all dual-task conditions. The greater declines in velocity and stride length in combination with cadence being stable suggest reductions in velocity during texting were due to shorter strides rather than a reduced rate of stepping. Contrary to our hypotheses, we found greater DTCs while walking forward rather than backward, which may be due to reduced gait performance during single-task backward walking; thus, further decrements with dual-tasking are unlikely. These findings underscore the need for further research investigating fall risk potential associated with texting and walking among aging populations and how interventions targeting stride length during dual-task circumstances may improve performance.  相似文献   

9.
The initiation of gait from a standing posture by 6 subjects, who took controlled-length steps, was analyzed. Using an inverted-pendulum model, we found that the duration of gait initiation was independent of gait velocity. This finding suggests that subjects' biomechanical constants are the determining factors for initiating movement. Both the instantaneous velocity of the center of gravity at the end of the first step (resulting in the propulsive forces measured on the ground) and the steady-state velocity (resulting in the step length and frequency) varied with step length, whereas step frequency did not. But step frequency and progression velocity were linked, for step frequency always increased in parallel with increased progression velocity. We interpret the correlation between velocity and frequency variations to be a peripheral expression of the posturodynamic control of the step parameters by the progression forces.  相似文献   

10.
The initiation of gait from a standing posture by 6 subjects, who took controlled-length steps, was analyzed. Using an inverted pendulum model, we found that the duration of gait initiation was independent of gait velocity. This finding suggests that subjects' biomechanical constants are the determining factors for initiating movement. Both the instantaneous velocity of the center of gravity at the end of the first step (resulting in the propulsive forces measured on the ground) and the steady-state velocity (resulting in the step length and frequency) varied with step length, whereas step frequency did not. But step frequency and progression velocity were linked, for step frequency always increased in parallel with increased progression velocity. We interpret the correlation between velocity and frequency variations to be a peripheral expression of the posturodynamic control of the step parameters by the progression forces.  相似文献   

11.
The authors studied the adjustment of the 2 distinct known expressions of gait velocity, the velocity of the center of gravity (CG) and the velocity of the center of foot pressure (CP) at the end of the 1st step in 2 experimental situations: natural gait initiation (the control situation, CS) and heel-off gait initiation (the test situation, TS). Gait was initiated by 7 healthy participants, from an erect spontaneous posture in the CS and from a posture with heels raised in the TS, on a force platform at 3 self-selected speed conditions. Biomechanical data from the force platform were collected in both experimental situations, and the authors used a particular gait analysis based on the differential method of Y. Brenière (2003) in order to approach velocity modulation by means of step length and frequency. Results showed that CG and CP velocities were adjusted differently during heel-off gait initiation than during natural gait initiation. CP velocity, as compared with CG velocity, was overestimated in TS. Results also established the relevance of the expression of step velocity by means of step length and frequency: The central nervous system, taking into account the specific postural constraints of each experimental situation, uses a reference value and a regulating parameter to modulate step velocity. Moreover, the contributions of 1st step length and frequency to the expression of step velocity in TS and CS were different. Thus, a specific locomotor behavior corresponds to a given experimental situation that is characterized by its own initial biomechanical constraints.  相似文献   

12.
The authors studied the adjustment of the 2 distinct known expressions of gait velocity, the velocity of the center of gravity (CG) and the velocity of the center of foot pressure (CP) at the end of the 1st step in 2 experimental situations: natural gait initiation (the control situation, CS) and heel-off gait initiation (the test situation, TS). Gait was initiated by 7 healthy participants, from an erect spontaneous posture in the CS and from a posture with heels raised in the TS, on a force platform at 3 self-selected speed conditions. Biomechanical data from the force platform were collected in both experimental situations, and the authors used a particular gait analysis based on the differential method of Y. Brenière (2003) in order to approach velocity modulation by means of step length and frequency. Results showed that CG and CP velocities were adjusted differently during heel-off gait initiation than during natural gait initiation. CP velocity, as compared with CG velocity, was overestimated in TS. Results also established the relevance of the expression of step velocity by means of step length and frequency: The central nervous system, taking into account the specific postural constraints of each experimental situation, uses a reference value and a regulating parameter to modulate step velocity. Moreover, the contributions of 1st step length and frequency to the expression of step velocity in TS and CS were different. Thus, a specific locomotor behavior corresponds to a given experimental situation that is characterized by its own initial biomechanical constraints.  相似文献   

13.
Simultaneous control of lower limb stepping movements and trunk motion is important for skilled walking; adapting gait to environmental constraints requires frequent alternations in stepping and trunk motion. These alterations provide a window into the locomotor strategies adopted by the walker. The authors examined gait strategies in young and healthy older adults when manipulating step width. Anteroposterior (AP) and mediolateral (ML) smoothness (quantified by harmonic ratios) and stepping consistency (quantified by gait variability) were analyzed during narrow and wide walking while controlling cadence to preferred pace. Results indicated older adults preserved ML smoothness at the expense of AP smoothness, shortened their steps, and exhibited reduced stepping consistency. The authors conclude that older adults prioritized ML control over forward progression during adaptive walking challenges.  相似文献   

14.
ABSTRACT The decline in frontal cognitive functions contributes to alterations of gait and increases the risk of falls in patients with dementia, a category which included Alzheimer's disease (AD). The objective of the present study was to compare the gait parameters and the risk of falls among patients at different stages of AD, and to relate these variables with cognitive functions. This is a cross-sectional study with 23 patients with mild and moderate AD. The Clinical Dementia Rating was used to classify the dementia severity. The kinematic parameters of gait (cadence, stride length, and stride speed) were analyzed under two conditions: (a) single task (free gait) and (b) dual task (walking and counting down). The risk of falls was evaluated using the Timed Up-and-Go test. The frontal cognitive functions were evaluated using the Frontal Assessment Battery (FAB), the Clock Drawing Test (CDT) and the Symbol Search Subtest. The patients who were at the moderate stage suffered reduced performance in their stride length and stride speed in the single task and had made more counting errors in the dual task and still had a higher fall risk. Both the mild and the moderate patients exhibited significant decreases in stride length, stride speed and cadence in the dual task. Was detected a significant correlation between CDT, FAB, and stride speed in the dual task condition. We also found a significant correlation between subtest Similarities, FAB and cadence in the dual task condition. The dual task produced changes in the kinematic parameters of gait for the mild and moderate AD patients and the gait alterations are related to frontal cognitive functions, particularly executive functions.  相似文献   

15.
Music elicits a wide range of human emotions, which influence human movement. We sought to determine how emotional states impact forward gait during music listening, and whether the emotional effects of music on gait differ as a function of familiarity with music. Twenty-four healthy young adults completed walking trials while listening to four types of music selections: experimenter-selected music (unfamiliar-pleasant), its dissonant counterpart (unfamiliar-unpleasant), each participant’s self-selected favorite music (familiar-pleasant), and its dissonant counterpart (familiar-unpleasant). Faster gait velocity, cadence, and stride time, as well as longer stride length were identified during pleasant versus unpleasant music conditions. Increased gait velocity, stride length, and cadence as well as reduced stride time were positively correlated with subjective ratings of emotional arousal and pleasure as well as musical emotions such as happiness-elation, nostalgia-longing, interest-expectancy, pride-confidence, and chills, and they were negatively related to anger-irritation and disgust-contempt. Moreover, familiarity with music interacted with emotional responses to influence gait kinematics. Gait velocity was faster in the familiar-pleasant music condition relative to the familiar-unpleasant condition, primarily due to longer stride length. In contrast, no differences in any gait parameters were found between unfamiliar-pleasant and unfamiliar-unpleasant music conditions. These results suggest emotional states influence gait behavior during music listening and that such effects are altered by familiarity with music. Our findings provide fundamental evidence of the impact of musical emotion on human gait, with implications for using music to enhance motor performance in clinical and performance settings.  相似文献   

16.
The aim of the current study was to determine the extent to which pleasant and unpleasant emotional states impact the initiation of forward gait. Participants initiated gait and walked for several steps following the presentation of low arousing pleasant, high arousing pleasant, low arousing unpleasant, high arousing unpleasant, and neutral pictures. Reaction time, displacement, and velocity of the center of pressure (COP) trajectory, and length and velocity of the first and second steps were calculated. Exposure to the highly arousing unpleasant pictures reduced reaction times compared to all other affective conditions. Compared to the low arousing unpleasant pictures, exposure to the high and low arousing pleasant pictures increased the displacement of the COP movement during the anticipatory postural adjustment phase of gait initiation. Additionally, exposure to the low arousing pleasant pictures increased the velocity of the COP movement during the anticipatory postural adjustment phase, compared to the high and low arousing unpleasant pictures. Exposure to the high and low arousing pleasant pictures increased the velocity of the first step relative to the low arousing unpleasant pictures. These findings demonstrate that highly arousing unpleasant emotional states accelerate the initial motor response, but pleasant emotional states generally facilitate the initiation of forward gait due to the approach-oriented directional salience of the movement. These findings extend the scope of the motivational direction hypothesis by demonstrating the effects of emotional reactivity on the initiation of gait.  相似文献   

17.
ABSTRACT

The decline in frontal cognitive functions contributes to alterations of gait and increases the risk of falls in patients with dementia, a category which included Alzheimer's disease (AD). The objective of the present study was to compare the gait parameters and the risk of falls among patients at different stages of AD, and to relate these variables with cognitive functions. This is a cross-sectional study with 23 patients with mild and moderate AD. The Clinical Dementia Rating was used to classify the dementia severity. The kinematic parameters of gait (cadence, stride length, and stride speed) were analyzed under two conditions: (a) single task (free gait) and (b) dual task (walking and counting down). The risk of falls was evaluated using the Timed Up-and-Go test. The frontal cognitive functions were evaluated using the Frontal Assessment Battery (FAB), the Clock Drawing Test (CDT) and the Symbol Search Subtest. The patients who were at the moderate stage suffered reduced performance in their stride length and stride speed in the single task and had made more counting errors in the dual task and still had a higher fall risk. Both the mild and the moderate patients exhibited significant decreases in stride length, stride speed and cadence in the dual task. Was detected a significant correlation between CDT, FAB, and stride speed in the dual task condition. We also found a significant correlation between subtest Similarities, FAB and cadence in the dual task condition. The dual task produced changes in the kinematic parameters of gait for the mild and moderate AD patients and the gait alterations are related to frontal cognitive functions, particularly executive functions.  相似文献   

18.
The authors examined how individuals adapt their gait and regulate their body configuration before altering direction during walking. Eight young adults were asked to change direction during walking with different turning angles (0deg;, 45deg;, 90deg;), pivot foot (left, right), and walking speeds (normal and fast). The authors used video and force platform systems to determine participants' whole-body center of mass and the center of pressure during the step before they changed direction. The results showed that anticipatory postural adjustments occurred during the prior step and occurred earlier for the fast walking speed. Anticipatory postural adjustments were affected by all 3 variables (turn angle, pivot foot, and speed). Participants leaned backward and sideward on the prior step in anticipation of the turn. Those findings indicate that the motor system uses central control mechanisms to predict the required anticipatory adjustments and organizes the body configuration on the basis of the movement goal.  相似文献   

19.
It is common sense that walking on sand poses challenges to postural control. However, there are no studies quantifying the kinematics of sand walking compared to other types of postural perturbations such as unstable shoes. The aim of the study was to investigate differences in walking kinematics during walking on solid ground, in unstable shoes and on unstable surfaces. Nineteen healthy young adults (23.5 ± 1.5 years) performed three different walking tasks: 1) walking at preferred speed while wearing regular shoes; 2) Walking at preferred speed wearing Masai Barefoot Technology shoes and 3) barefoot walking at preferred speed on a large sand grave. Full-body kinematics were recorded during all conditions using an inertial motion capture system. Basic gait parameters (walking speed, stride length and duration), relative vertical center-of-mass position (rvCOM), and ankle, knee and hip joint angles in the sagittal plane were compared across the tasks through statistical parametric mapping over the course of full walking cycles. Participants presented similar walking speed, as well as stride length and duration across different conditions (p > 0.05). However, walking on sand reduced the rvCOM (p < 0.05), while also requiring greater ankle plantarflexion during stance phase (p < 0.05), as well as greater knee and hip flexion during leg swing and initial contact when compared to the other conditions (p < 0.05). It was concluded that walking on sand substantially changes walking kinematics, and may cause greater postural instability than unstable shoes. Therefore, walking on sand can be an alternative to improve postural control in patients undergoing walking rehabilitation.  相似文献   

20.
BackgroundWith increases in life expectancy, it is important to understand the influence of aging on gait, given that this activity is related to the independence of older adults and may help in the development of health strategies that encourage successful aging in all phases of this process.Research questionTo compare gait parameters with usual and fast speeds for independent and autonomous older adults throughout the aging process (60 to 102 years old), and also to identify which of the gait variables are best for identifying differences across the different age groups.MethodsTwo hundred older adults aged between 60 and 102 years were evaluated. The sample was divided into 3 age groups: 60 to 79 years, 80 to 89 years and 90 years and over. The analyzed gait variables were: speed (meters/s), cadence (steps/min), stride time (seconds), step length (centimeters), double support (percentage of the gait cycle), swing (percentage of the gait cycle), step length variability (CoV%) and stride time variability (CoV%).ResultsGroup comparison regarding usual gait and fast gait revealed a significant difference in all gait variables. In addition, it can be seen that variables such as gait speed and step length showed greater effect sizes in intergroup comparison (usual gait: 0.48 and 0.47; fast gait: 0.36 and 0.40; respectively), possibly showing that these variables can better detect the changes observed with increasing age.ConclusionThere are differences in the gait performance of older adults from different age groups for usual and fast gait speeds, which is more evident regarding gait speed and step length variables. We recommend the use of usual gait for the identification of the effects of aging because, besides showing a higher effect size values it is more comfortable and requires less effort from older subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号