首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Words with an early or late orthographic uniqueness point and nonwords with an early or late orthographic deviation point were presented to the left, right, or both visual fields simultaneously. In Experiment 1, 20 participants made lexical decision judgements to horizontal stimulus presentations. In Experiment 2, a further 20 participants completed the task using vertical presentations to control for attentional biases. Consistent with previous research, words with earlier orthographic uniqueness points prompted faster responses across visual fields, regardless of stimulus orientation. Although research has suggested that the left hemisphere's superiority for language processing stems from a comparatively parallel processing strategy, with the right hemisphere reliant upon a serial mechanism, left and right visual field presentations were not differentially affected by orthographic uniqueness point. This suggests that differential sequential effects previously reported result during processes other than retrieval from the lexicon. The overall right visual field advantage observed using horizontal presentations disappeared when stimuli were presented vertically. Contrary to expectations, there was a facilitatory effect of late orthographic deviation point for horizontal nonword presentations. Overall, the results were interpreted as being consistent with predictions of a cohort model of word recognition, and they highlighted the effect of stimulus orientation on left and right hemisphere word recognition.  相似文献   

2.
The original aim was to examine the effect of perceived distance, induced by the Ponzo illusion, on left/right asymmetries for line bisection. In Experiment 1, university students (n?=?29) made left/right bisection judgements for lines presented in the lower or upper half of the screen against backgrounds of the Ponzo stimuli, or a baseline. While the Ponzo illusion had relatively little effect on line bisection, elevation in the baseline condition had a strong effect, whereby the leftward bias was increased for upper lines. Experiment 2 (n?=?17) eliminated the effect of elevation by presenting the line in the middle and moving the Ponzo stimuli relative to the line. Despite this change, the leftward bias was still stronger in the upper condition in the baseline condition. The final experiment (n?=?17) investigated whether upper/lower visual stimulation, which was irrelevant to the task, affected asymmetries for line bisection. The results revealed that a rectangle presented in the upper half of the screen increased the leftward line bisection bias relative to a baseline and lower stimulation condition. These results corroborate neuroimaging research, showing increased right parietal activation associated with shifts of attention into the upper hemispace. This increased right parietal activation may increase the leftward attentional bias—resulting in a stronger leftward bias for line bisection.  相似文献   

3.
Six experiments examined orientation-specific effects of stimulus context on the visual perception of horizontal and vertical lengths: Using a paired-comparison method, Experiments 1–5 showed that the probability of judging a given vertical line to be longer than a given horizontal line was relatively great when the stimulus set comprised relatively long horizontals and short verticals, and relatively small when the stimulus set comprised short horizontals with long verticals. To the extent that stimulus context exerts orientation-specific effects on perceived length, it thereby modulates the degree to which verticals appear longer than physically equivalent horizontals: the horizontal—vertical illusion (HVI). Under various contextual conditions, the HVI was as small as 3% (horizontals had to be 3% greater than verticals to be perceived as equally long) and as great as 15%, equaling about 12% in a “neutral” context. In Experiment 6, subjects judged the absolute physical length of each stimulus, and the results indicated that stimulus context acted largely by decreasing perceived lengths. The results are consistent with the hypothesis that differential effects of context reflect a process of stimulus-specific perceptual attenuation.  相似文献   

4.
The mechanisms underlying the right hemisphere's dominance for spatial and attentional functions lacks a comprehensively explanation. For example, perceptual biases, as observed in line bisection and related tasks, might be caused by an attentional asymmetry or by perceptual processes such as a specialization of the left and right hemisphere for high and low spatial frequencies (SFs), respectively. Here we used the gratingscales task to measure perceptual bias in SF judgements, and we cued participants' attention either to high or low SFs. Participants showed a leftward bias when comparing the high SF components of the stimulus, and a rightward bias when comparing the low SF components-opposite to what would be expected from a hemispheric lateralization for SFs. Two control experiments used different strategies to manipulate the width of the attentional window. However, we observed no influence on perceptual bias, thus ruling out the possibility that the results in Experiment 1 were due to differences in attentional window size. These data support the idea of an attentional asymmetry underlying perceptual bias. Our results provide novel support for the role of attentional asymmetry in perceptual biases.  相似文献   

5.
Summary The relative functional significance of attention shifts and attentional zooming for the coding of stimulus position in spatial compatibility tasks is demonstrated by proposing and testing experimentally a tentative explanation of the absence of a Simon effect in Experiment 3 of Umiltà and Liotti (1987). It is assumed that the neutral point of the spatial frame of reference for coding spatial position is at the position where attention is focussed immediately before exposition of the stimulus pattern. If a stimulus pattern is exposed to the right or the left of this position a spatial compatibility effect can be observed when the stimulus-response pairing is incompatible. Generalizing from this, one can say that a spatial compatibility effect will be observed if the last step in attentional focussing of the stimulus attribute specifying the response is a horizontal or a vertical attention shift. If the last step in focussing is attentional zooming (change in the representational level attended to), the stimulus pattern is localized at the horizontal and the vertical positions where the last attention shift had positioned the focus. In this case the spatial code is neutral on these dimensions and so no spatial compatibility effect should result. To test this model we conducted two experiments. Experiment 1 replicated the finding of Umiltà and Liotti that there is no Simon effect in the condition with no delay between a positional cue (two small boxes on the left or right of a fixation cross) and the imperative stimulus, whereas in the condition with a delay of 500 ms a Simon effect was observed. In a comparison condition with a single, rather large cue instead of two small boxes (forcing attention to zoom in), no Simon effect was observed under either delay condition. Experiment 2 used a spatial compatibility task proper with the same experimental conditions as Experiment 1. But in contrast to those of Experiment 1, the results show strong compatibility effects in all cue and delay conditions. The absence of a Simon effect in some experimental conditions in Experiment 1 and the presence of a spatial compatibility effect proper in all conditions in Experiment 2 are consistently accounted for with the proposed attentional explanation of spatial coding and spatial compatibility effects.  相似文献   

6.
Perceptual asymmetries have been explained by structural, attentional bias and attentional advantage models. Structural models focus on asymmetries in the physical access information has to the hemispheres, whereas attentional models focus on asymmetries in the operation of attentional processes. A series of experiments was conducted to assess the contribution of attentional mechanisms to the right visual field (RVF) advantage found for word recognition. Valid, invalid and neutral peripheral cues were presented at a variety of stimulus onset asynchronies to manipulate spatial attention. Results indicated a significant RVF advantage and cueing effect. The effect of the cue was stronger for the left visual field than the RVF. This interaction supports the attentional advantage model which suggests that the left hemisphere requires less attention to process words. The attentional asymmetry is interpreted in terms of the different word processing styles used by the left and right hemispheres. These results have ramifications for the methodology used in divided visual field research and the interpretation of this research.  相似文献   

7.
Frontal and parietal electroencephalographic (EEG) asymmetries mark vulnerability to depression and anxiety. Drawing on cognitive theories of vulnerability, we hypothesise that cortical asymmetries predict attention to threat. Participants completed a dot-probe task in which bilateral face displays were followed by lateralised targets at either short (300 ms) or long (1050 ms) SOA. We also measured N2pc to face onset as an index of early attentional capture. At long SOA only, frontal and parietal asymmetry interacted to predict attentional bias to angry faces. Those with leftward frontal asymmetry showed no attentional bias. Among those with rightward frontal asymmetry those with low right parietal activity showed vigilance for threat, and those with high right parietal activity showed avoidance. Asymmetry was not related to the N2pc or to attentional bias at the short SOA. Findings suggest that trait asymmetries reflect function in a fronto-parietal network that controls attention to threat.  相似文献   

8.
The research was designed to determine whether the purported hemispheric asymmetries that are associated with attention deficit/hyperactivity disorder (ADHD) affect performance on a selective attention visual search task, and whether any obtained asymmetry will be modulated by methylphenidate. Two groups of children (8–15 years) with ADHD, one with methylphenidate treatment (ADHD+) and one without (ADHD+), were compared to matched controls on a two-stage visual search task. The task assessed right–left visual field asymmetries and the effects of changing a previous distractor into a target. Such a procedure, related to latent inhibition (LI; poorer performance to a previously irrelevant stimulus than to a novel one), can provide evidence for dysfunctional processing of irrelevant stimuli. All three groups exhibited the LI effect. The ADHD group, however, exhibited less LI for left- than right-side targets, an effect absent in the control and ADHD+ groups, suggesting a lateralized attentional deficit for ADHD+ that was normalized by methylphenidate.  相似文献   

9.
Experiments 1 and 2 of this study show that when the target is either a vertical or a horizontal line, diagonal-line flankers tilted 45° either to the right or to the left have the same effect as do incongruent flankers. When the target is a diagonal line tilted either to the right or to the left, vertical- or horizontal-line flankers do not have the same effect as do incongruent flankers. Experiment 3 demonstrates that this asymmetry is not caused by the temporal-dynamic aspects of the processing. Together, these experiments suggest that there is an asymmetrical relation between diagonal lines and either vertical or horizontal lines otttside of the central focus of attention. Experiment 4 shows that despite this asymmetry in the flanker task, visual search for a vertical- or a horizontal-line target among diagonal-line distractors is not affected by the number of distractors. Possible explanations of this phenomenon are discussed.  相似文献   

10.
Normal subjects and patients with right hemisphere lesions with or without signs of left unilateral neglect judged the length of a horizontal line presented on the left or on the right side of space. In half of the trials, the line was presented with a centrally located square or diamond, and subjects had to identify the central stimulus before performing the judgment of length. The presence of the central stimulus improved accuracy of performance in controls and in patients without neglect; neglect patients, however, produced more overestimations of left-sided lines when these was presented with a central stimulus than when the lines occurred in isolation. This finding underlines the importance of attentional factors in length estimates performed by neglect patients in their neglected space.  相似文献   

11.
12.
In the first of two experiments reported here, subjects adjusted the length of a variable line until it appeared to be as long as a standard line. There were two sizes of standard line, 3 and 6 inches, and each was shown vertically for some trials and horizontally for others. The variable line was presented in each of the 10° positions from 0° (horizontal), through 90° (vertical), to 170°. The principal results of the first experiment are:

(1) Vertical lines look longer than horizontal lines of the same length, but lines tilted 20°-30° to the left of vertical look longer than lines in any other orientation. The results are asymmetrical, because lines tilted to the right of vertical do not look as long as those tilted to the left of vertical.

(2) The variability of the settings increases as the angle increases between the standard and variable lines.

(3) When they are expressed in percentage terms, the data obtained with the 3-and 6-inch standards are virtually identical, i.e. the data for the 3-inch standard can be made to match those for the 6-inch standard simply by doubling the former.

(4) There are enormous differences among subjects in the patterns of settings made at the various angles. A few subjects apparently experienced no illusory effects since they adjusted the variable line to about the same physical length irrespective of its orientation. Other subjects showed exaggerated overestimations of the variable line for vertical and near-vertical positions.

In the first experiment, the variable line was always to the left of the standard, and it was natural to assume that this position effect had somehow produced the asymmetry noted in paragraph 1 above. This hypothesis was tested in the second experiment which alternatively showed the variable line above, below, to the right of, and to the left of the standard line. The results of this experiment generally confirm the data of the first experiment in showing that lines tilted 20°-30° to the left of vertical look longer than lines tilted to any other position. In addition, the second experiment shows that this asymmetry in the results is not a function of the relative positions of the variable and standard lines. In general, however, overestimations of length are smaller when the two lines are one above the other, greater when the two lines are side by side.  相似文献   

13.
The present study investigates the influence of depth on pseudoneglect in healthy young participants (n = 18) within three-dimensional virtual space, by presenting a variation of the greyscales task and a landmark task, which were specifically matched for stimulus–response compatibility, as well as perceptual factors within and across the tasks. Tasks were presented in different depth locations (peripersonal, extrapersonal) and different orientations (horizontal, vertical) within three-dimensional virtual space, using virtual reality technique. A horizontal leftward bias (pseudoneglect) for both tasks was found, which was stronger in peripersonal than in extrapersonal space. For the vertical condition, an upward bias was observed in the greyscales task, but not in the landmark task. These results support the hypotheses of right hemispheric dominance for visual spatial attention and our study is the first to examine horizontal and vertical orienting biases with the greyscales task in peri- and extrapersonal space. Furthermore, the differences in attentional asymmetries with respect to depth suggest dissociable neural mechanisms for visual attentional processing in near and far space and the lack of significant correlations implies independence of horizontal and vertical stimulus processing.  相似文献   

14.
The above-right/below-left mapping advantage with vertical stimuli and horizontal responses is known as the orthogonal stimulus–response compatibility (SRC) effect. We investigated whether the orthogonal SRC effect emerges with irrelevant stimulus dimensions. In Experiment 1, participants responded with a right or left key press to the colour of the stimulus presented above or below the fixation. We observed an above-right/below-left advantage (orthogonal Simon effect). In Experiment 2, we manipulated the polarity in the response dimension by varying the horizontal location of the response set. The orthogonal Simon effect decreased and even reversed as the left response code became more positive. This result provides evidence for the automatic activation of the positive and negative response codes by the corresponding positive and negative stimulus codes. These findings extended the orthogonal SRC effect based on coding asymmetry to an irrelevant stimulus dimension.  相似文献   

15.
The above-right/below-left mapping advantage with vertical stimuli and horizontal responses is known as the orthogonal stimulus-response compatibility (SRC) effect. We investigated whether the orthogonal SRC effect emerges with irrelevant stimulus dimensions. In Experiment 1, participants responded with a right or left key press to the colour of the stimulus presented above or below the fixation. We observed an above-right/below-left advantage (orthogonal Simon effect). In Experiment 2, we manipulated the polarity in the response dimension by varying the horizontal location of the response set. The orthogonal Simon effect decreased and even reversed as the left response code became more positive. This result provides evidence for the automatic activation of the positive and negative response codes by the corresponding positive and negative stimulus codes. These findings extended the orthogonal SRC effect based on coding asymmetry to an irrelevant stimulus dimension.  相似文献   

16.
Hemispheric asymmetries for tactile simultaneity judgments were investigated in 34 dextral adults. Pairs of vibrotactile stimuli with simultaneous or successive onsets were delivered unilaterally to the left or right hand. Participants made a forced-choice, bipedal response, indicating whether a stimulus was simultaneous or successive. The effect of hemispatial attentional biases was investigated, using ipsilateral (arms uncrossed) and contralateral (arms crossed) hand placements. Trials presented to the right hand were associated with fewer errors and a trend for faster response times than were those presented to the left hand. There was no asymmetry in response bias. Manipulations of hemispace did not affect the right hand advantage. These results confirm the existence of a left hemisphere temporal-processing advantage but fail to demonstrate that the asymmetry is the result of a rightward attentional bias. The implications of these results for absolute and relative models of hemispheric specialization are discussed.  相似文献   

17.
Summary It has been claimed that spatial attention plays a decisive role in the effect of irrelevant spatial stimulus-response correspondence (i. e., the Simon effect), especially the way the attentional focus is moved onto the stimulus (lateral shifting rather than zooming). This attentional-movement hypothesis is contrasted with a referential-coding hypothesis, according to which spatial stimulus coding depends on the availability of frames or objects of reference rather than on certain attentional movements. In six experiments, reference objects were made available to aid spatial coding, which either appeared simultaneously with the stimulus (Experiments 1–3), or were continuously visible (Experiments 4–6). In contrast to previous experiments and to the attentional predictions, the Simon effect occurred even though the stimuli were precued by large frames surrounding both possible stimulus positions (Experiment 1), even when the reference object's salience was markedly reduced (Experiment 2), or when the precueing frames were made more informative (Experiment 3). Furthermore, it was found that the Simon effect is not reduced by spatial correspondence between an uninformative spatial precue and the stimulus (Experiment 4), and it does not depend on the location of spatial precues appearing to the left or right of both possible stimulus locations (Experiment 5). This was true even when the precue was made task-relevant in order to ensure attentional focusing (Experiment 6). In sum, it is shown that the Simon effect does not depend on the kind of attentional operation presumably performed to focus onto the stimulus. It is argued that the available data are consistent with a coding approach to the Simon effect which, however, needs to be developed to be more precise as to the conditions for spatial stimulus coding.  相似文献   

18.
There is evidence that automatic visual attention favors the right side. This study investigated whether this lateral asymmetry interacts with the right hemisphere dominance for visual location processing and left hemisphere dominance for visual shape processing. Volunteers were tested in a location discrimination task and a shape discrimination task. The target stimuli (S2) could occur in the left or right hemifield. They were preceded by an ipsilateral, contralateral or bilateral prime stimulus (S1). The attentional effect produced by the right S1 was larger than that produced by the left S1. This lateral asymmetry was similar between the two tasks suggesting that the hemispheric asymmetries of visual mechanisms do not contribute to it. The finding that it was basically due to a longer reaction time to the left S2 than to the right S2 for the contralateral S1 condition suggests that the inhibitory component of attention is laterally asymmetric.  相似文献   

19.
Perceptual asymmetries in face recognition   总被引:1,自引:1,他引:0  
Four experiments were carried out to investigate perceptual asymmetries in face recognition. Perceptual asymmetries favoring the half-face on the observer's left were found under free viewing conditions for both unfamiliar faces (Experiment 1) and famous faces (Experiment 3). For unfamiliar faces, this asymmetry was not obtained when fixation was controlled by presenting faces tachistoscopically (Experiment 2). For famous faces, the perceptual asymmetry favoring the half-face normally seen on the left did not appear to be retained in memory (Experiments 3 and 4). Asymmetries in face perception have been explained in terms of a direct access model of laterally effects. However, these results raise the possibility that asymmetric scanning or attentional factors may be important.  相似文献   

20.
Using a lexical decision task, the authors investigated whether brain asymmetries in the detection of emotionally negative semantic associations arise only at a perceptually discriminative stage at which lexical analysis is accurate or can already be found at crude and incomplete levels of perceptual representation at which word-nonword discrimination is based solely on guessing. Emotionally negative and neutral items were presented near perceptual threshold in the left and right visual hemifields. Word-nonword discrimination performance as well as the bias to classify a stimulus as a "word" (whether or not it actually is a word) were assessed for a normal, horizontal stimulus presentation format (Experiment 1) and for an unusual, vertical presentation format (Experiment 2). Results show that while the two hemispheres are equally able to detect affective semantic associations at a prelexical processing stage (both experiments), the right hemisphere is superior at a postlexical, perceptually discriminative stage (Experiment 2). Moreover, the findings suggest that only an unusual, nonoverlearned stimulus presentation format allows adequate assessment of the right hemisphere's lexical-semantic skills.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号