首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have measured depolarization-induced release of endogenous glutamate in synaptosomes prepared from the dentate gyrus after the induction of LTP by high-frequency stimulation in anesthetized rats, and after training in the water maze. Both spatial training and LTP in untrained rats were accompanied by an increase in glutamate release from dentate synaptosomes. The enhancement of synaptosomal glutamate release induced by high-frequency stimulation was abolished in well-trained rats, and was reduced in partially trained rats and in rats trained in a nonspatial task. However, the magnitude of LTP was similar in well-trained and untrained groups. These results indicate that spatial training activates a glutamate release pathway that converges with that activated in LTP, and demonstrate an unexpected dissociation between increased glutamate release and LTP.  相似文献   

2.
The polysialylated neural cell adhesion molecule (PSA-NCAM) has been implicated in activity-dependent synaptic remodeling and memory formation. Here, we questioned whether training-induced modulation of PSA-NCAM expression might be related to individual differences in spatial learning abilities. At 12 h posttraining, immunohistochemical analyses revealed a learning-induced up-regulation of PSA-NCAM in the hippocampal dentate gyrus that was related to the spatial learning abilities displayed by rats during training. Specifically, a positive correlation was found between latency to find the platform and subsequent activated PSA levels, indicating that greater induction of polysialylation was observed in rats with the slower acquisition curve. At posttraining times when no learning-associated activation of PSA was observed, no such correlation was found. Further experiments revealed that performance in the massed water maze training is related to a pattern of spatial learning and memory abilities, and to learning-related glucocorticoid responsiveness. Taken together, our findings suggest that the learning-related neural circuits of fast learners are better suited to solving the water maze task than those of slow learners, the latter relying more on structural reorganization to form memory, rather than the relatively economic mechanism of altering synaptic efficacy that is likely used by the former.  相似文献   

3.
Long-term synaptic enhancement in the hippocampus has been suggested to cause deficits in spatial performance. Synaptic enhancement has been reported after hippocampal kindling that induced repeated electrographic seizures or afterdischarges (ADs) and after long-term potentiation (LTP) defined as synaptic enhancement without ADs. We studied whether repeated stimulations that gave LTP or ADs resulted in spatial performance deficits on the radial arm maze (RAM) and investigated the minimal number of ADs required for such deficits. Three experimental groups were run as follows: (1) 5 hippocampal ADs in 1 d (5-AD group), (2) 10 hippocampal ADs in 2 d (10-AD group), and (3) 12 -frequency primed-burst stimulations (PBSs) in 2 d in order to induce LTP without ADs (LTP group). Each experimental group was run together with a control group during the same time period. Rats were first trained in a spatial task on a radial arm maze with four of the eight arms baited, then given control or experimental treatment, and maze performance was tested in the first week (1-4 d) and fourth week (22-25 d) after treatment. Basal dendritic population excitatory postsynaptic potentials (pEPSPs) and medial perforant path (MPP)-evoked dentate gyrus population spike and polysynaptic CA1 excitation were recorded before and after experimental and control treatment. Spatial memory errors, in particular reference memory errors, were significantly higher in the 10-AD kindled group than any other group on the first and fourth week after treatment. Spatial memory errors were not significantly different in the 5-AD and LTP groups as compared with any control groups at any time. Basal dendritic pEPSP in CA1 was enhanced for about 1 wk after 12 PBSs, 10 ADs, or 5 ADs, while the dentate gyrus population spike and CA1 polysynaptic excitation evoked by MPP was increased for up to 4 wk after 10 ADs, but not 12 PBSs. Thus, distributed alteration of multiple synaptic transmission in the entorhinal-hippocampal circuit, but not LTP at the basal dendritic synapses in CA1, may disrupt spatial performance after 10 hippocampal ADs.  相似文献   

4.
Extensive literature has demonstrated that arousal and fear modify memory acquisition and consolidation. Predator hair and odors increase arousal in rats and, therefore, may influence information encoding and synaptic plasticity in the rodent nervous system. In behavioral experiments, we confirm that laboratory-bred Long Evans rats avoid cat hair. Electrophysiological work in vivo showed that long-term potentiation (LTP) in the dentate gyrus induced by perforant path stimulation was enhanced for 5-7 days when LTP induction occurred in the presence of cat hair relative to fake hair. The muscarinic receptor antagonist scopolamine (i.p.) reversed the cat hair-elicited LTP enhancement without affecting weaker LTP elicited in the presence of fake hair. Thus, exposure to a predator stimulus elicits a cholinergically-dependent state of heightened plasticity that may serve to facilitate information storage in hippocampal circuits.  相似文献   

5.
To define the physiological role of IP33-kinase(A) in vivo, we have generated a mouse strain with a null mutation of the IP33-kinase(A) locus by gene targeting. Homozygous mutant mice were fully viable, fertile, apparently normal, and did not show any morphological anomaly in brain sections. In the mutant brain, the IP4 level was significantly decreased whereas the IP3 level did not change, demonstrating a major role of IP33-kinase(A) in the generation of IP4. Nevertheless, no significant difference was detected in the hippocampal neuronal cells of the wild-type and the mutant mice in the kinetics of Ca2+ regulation after glutamate stimulation. Electrophysiological analyses carried out in hippocampal slices showed that the mutation significantly enhanced the LTP in the hippocampal CA1 region, but had no effect on the LTP in dentate gyrus (DG). No difference was noted, however, between the mutant and the wild-type mice in the Morris water maze task. Our results indicate that IP33-kinase(A) may play an important role in the regulation of LTP in hippocampal CA1 region through the generation of IP4, but the enhanced LTP in the hippocampal CA1 does not affect spatial learning and memory.  相似文献   

6.
7.
Corticosterone and Brain-Derived Neurotrophic Factor (BDNF) have both been shown to be involved in spatial memory formation in rats. In the present study we have investigated the effect of corticosterone on hippocampal BDNF mRNA expression after training in the Morris water maze in young adult Wistar rats. Therefore, we first studied BDNF mRNA levels in the hippocampus in relation to corticosterone levels at several time points after 4 training trials in the Morris water maze. Corticosterone levels were significantly increased after this procedure, and hippocampal BDNF mRNA levels only displayed a minor change: an increase in CA1 at 1 hr after training. However, in a previous study we observed dramatically decreased hippocampal BDNF mRNA levels in dentate gyrus and CA1 at 3 hr after injection of corticosterone. In order to analyze this discrepancy, we subsequently investigated if hippocampal BDNF mRNA expression is affected by corticosterone at 3 hr after water maze training. Therefore, we incorporated ADX animals and ADX animals which were injected with corticosterone in our study. ADX animals which were subjected to water maze training displayed similar hippocampal BDNF mRNA levels 3 hr after training compared to control ADX animals. Furthermore, ADX animals which were injected with corticosterone showed decreased BDNF mRNA levels in all hippocampal regions compared to control ADX animals. Water maze training did not alter this effect. Thus, the increased corticosterone levels during water maze training do not affect hippocampal BDNF mRNA expression, although exogenous corticosterone is effective under these conditions. Hence, our results suggest that in this situation BDNF is resistant to regulation by endogenous corticosterone, which may be important for learning and memory processes.  相似文献   

8.
Long-term potentiation (LTP) and depression (LTD) are considered as cellular models for learning and memory. We studied the impact of holeboard training on LTP in the rat CA1 hippocampal region. In 7-week-old Wistar rats a recording electrode was chronically implanted into the hippocampal pyramidal cell layer of the CA1 of the right hemisphere and a stimulation electrode into the contralateral CA3 region.Two groups of animals received a spatial holeboard training of 10 or 15 trials over 2 days on a fixed pattern of baited holes. The last trial was performed 15 min after a primed burst stimulation of the contralateral CA3, which resulted in LTP in the ipsilateral CA1. A pseudo-trained group that received a 10 trial training with changing patterns of baited holes after each trial and a group that remained in the recording chambers during the experiments served as controls. Experimental rats significantly improved their spatial performance with increasing numbers of trials, indicated by decreasing times to pick up all food pellets and by decreasing numbers of reference memory errors. A learning-related impairment of CA1-LTP measured in both the population-spike amplitude as well as the fEPSP could be noted. These results show that specific (pattern-training), but not unspecific (pseudo-training) spatial information processing prior to electrical stimulation can severely affect LTP in hippocampal area CA1.  相似文献   

9.
Physical activity improves learning and hippocampal neurogenesis. It is unknown whether compounds that increase endurance in muscle also enhance cognition. We investigated the effects of endurance factors, peroxisome proliferator-activated receptor δ agonist GW501516 and AICAR, activator of AMP-activated protein kinase on memory and neurogenesis. Mice were injected with GW for 7 d or AICAR for 7 or 14 d. Two weeks thereafter mice were tested in the Morris water maze. AICAR (7 d) and GW improved spatial memory. Moreover, AICAR significantly, and GW modestly, elevated dentate gyrus neurogenesis. Thus, pharmacological activation of skeletal muscle may mediate cognitive effects.  相似文献   

10.
Intradentate injection of colchicine is one of the techniques used to destroy granule cells. This study compared the behavioral effects of various amounts of colchicine (1.0, 3.0, and 6.0 microg; Col 1, Col 3, and Col 6, respectively) injected into the dentate gyrus of adult Long-Evans male rats. Starting 10 days after lesion surgery, behavioral testing assessed home-cage and open-field locomotion, alternation in a T-maze, water-maze, and radial-maze learning according to protocols placing emphasis on reference, and working memory. All of these tasks are sensitive to hippocampal disruption. Histological verifications showed that the extent of the lesions depends on the dose of colchicine (index of dentate gyrus shrinkage: -33% in Col 1, -54% in Col 3, and -67% in Col 6 rats). Colchicine dose-dependently increased nocturnal home cage activity (an effect found 10 days but not 5 months after surgery), but had no significant effect on open-field locomotion or T-maze alternation. A dose-dependent reference memory impairment was found during the acquisition of spatial navigation in the water maze; Col 3 and Col 6 rats were more impaired than Col 1 rats. During the probe trial (platform removed), control rats spent a longer distance swimming over the platform area than all rats with colchicine lesions. In the working memory version of the test, all rats with colchicine lesions showed significant deficits. The deficits were larger in Col 3 and Col 6 rats compared to Col 1 rats. The lesions had no effect on swimming speed. In the radial-maze test, there was also a dose-dependent working memory impairment. However, reference memory was disrupted in a manner that did not differ among the three groups of lesioned rats. Our data are in line with the view that the dentate gyrus plays an important role in the acquisition of new information and is an integral neural substrate for spatial reference and spatial working memory. They also suggest that damage to granule cells might have more pronounced effects on reference than on working memory in the radial maze. Finally, they demonstrate that part of the variability in the conclusions from previous experiments concerning the role of granule cells in cognitive processes, particularly in spatial learning and memory, may be due to the type of tests used and/or the extent of the damage produced.  相似文献   

11.
Numerous studies suggest roles for monoamines in modulating long-term potentiation (LTP). Previously, we reported that both induction and maintenance of perforant path-dentate gyrus LTP is enhanced when induced while animals explore novel environments. Here we investigate the contribution of serotonin and 5-HT1a receptors to the novelty-mediated enhancement of LTP. In freely moving animals, systemic administration of the selective 5-HT1a antagonist WAY-100635 (WAY) attenuated LTP in a dose-dependent manner when LTP was induced while animals explored novel cages. In contrast, LTP was completely unaffected by WAY when induced in familiar environments. LTP was also blocked in anesthetized animals by direct application of WAY to the dentate gyrus, but not to the median raphe nucleus (MRN), suggesting the effect of systemic WAY is mediated by a block of dentate 5-HT1a receptors. Paradoxically, systemic administration of the 5-HT1a agonist 8-OH-DPAT also attenuated LTP. This attenuation was mimicked in anesthetized animals following application of 8-OH-DPAT to the MRN, but not the dentate gyrus. In addition, application of a 5-HT1a agonist to the dentate gyrus reduced somatic GABAergic inhibition. Because serotonergic projections from the MRN terminate on dentate inhibitory interneurons, these data suggest 5-HT1a receptors contribute to LTP induction via inhibition of GABAergic interneurons. Moreover, activation of raphe 5-HT1a autoreceptors, which inhibits serotonin release, attenuated LTP induction even in familiar environments. This suggests that serotonin normally contributes to dentate LTP induction in a variety of behavioral states. Together, these data suggest that serotonin and dentate 5-HT1a receptors play a permissive role in dentate LTP induction, particularly in novel conditions, and presumably, during the encoding of novel, hippocampus-relevant information.  相似文献   

12.
Previous experiments in the hippocampal CA1 area have shown that corticosterone can facilitate long-term potentiation (LTP) in a rapid non-genomic fashion, while the same hormone suppresses LTP that is induced several hours after hormone application. Here, we elaborated on this finding by examining whether corticosterone exerts opposite effects on LTP depending on the timing of hormone application in the dentate gyrus as well. Moreover, we tested rapid and delayed actions by corticosterone on β-adrenergic-dependent changes in LTP. Unlike the CA1 region, our in vitro field potential recordings show that rapid effects of corticosterone do not influence LTP induced by mild tetanization in the hippocampal dentate gyrus, unless GABAA receptors are blocked. In contrast, the β-adrenergic agonist isoproterenol does initiate a slow-onset, limited amount of potentiation. When corticosterone was applied concurrently with isoproterenol, a further enhancement of synaptic strength was identified, especially during the early stage of potentiation. Yet, treatment with corticosterone several hours in advance of isoproterenol fully prevented any effect of isoproterenol on LTP. This emphasizes that corticosterone can regulate β-adrenergic modulation of synaptic plasticity in opposite directions, depending on the timing of hormone application.  相似文献   

13.
Prenatal stress can cause long-term effects on cognitive functions in offspring. Hippocampal synaptic plasticity, believed to be the mechanism underlying certain types of learning and memory, and known to be sensitive to behavioral stress, can be changed by prenatal stress. Whether enriched environment treatment (EE) in early postnatal periods can cause a recovery from these deficits is unknown. Experimental animals were Wistar rats. Prenatal stress was evoked by 10 foot shocks (0.8 mA for 1s, 2-3 min apart) in 30 min per day at gestational day 13-19. After weaning at postnatal day 22, experimental offspring were given the enriched environment treatment through all experiments until tested (older than 52 days age). Electrophysiological and Morris water maze testing was performed at 8 weeks of age. The results showed that prenatal stress impaired long-term potentiation (LTP) but facilitated long-term depression (LTD) in the hippocampal CA1 region in the slices. Furthermore, prenatal stress exacerbated the effects of acute stress on hippocampal LTP and LTD, and also impaired spatial learning and memory in the Morris water maze. However, all these deficits induced by prenatal stress were recovered by enriched environment treatment. This work observes a phenomenon that may contribute to the understanding of clinically important interactions among cognitive deficit, prenatal stress and enriched environment treatment. Enriched environment treatment on early postnatal periods may be one potentially important target for therapeutic interventions in preventing the prenatal stress-induced cognitive disorders.  相似文献   

14.
15.
The hippocampus and the nearby medial temporal lobe structures are required for the formation, consolidation, and retrieval of episodic memories. Sensory information enters the hippocampus via two inputs from entorhinal cortex (EC): One input (perforant path) makes synapses on the dendrites of dentate granule cells as the first set of synapses in the trisynaptic circuit, the other (temporoammonic; TA) makes synapses on the distal dendrites of CA1 neurons. Here we demonstrate that TA-CA1 synapses undergo both early- and late-phase long-term potentiation (LTP) in rat hippocampal slices. LTP at TA-CA1 synapses requires both NMDA receptor and voltage-gated Ca2+ channel activity. Furthermore, TA-CA1 LTP is insensitive to the blockade of fast inhibitory transmission (GABAA-mediated) and, interestingly, is dependent on GABAB-dependent slow inhibitory transmission. These findings indicate that the TA-CA1 synapses may rely on a refined modulation of inhibition to exhibit LTP.  相似文献   

16.
17.
In the adult brain, the expression of NT-3 is largely confined to the hippocampal dentate gyrus (DG), an area exhibiting significant neurogenesis. Using a conditional mutant line in which the NT-3 gene is deleted in the brain, we investigated the role of NT-3 in adult neurogenesis, hippocampal plasticity, and memory. Bromodeoxyuridine (BrdU)-labeling experiments demonstrated that differentiation, rather than proliferation, of the neuronal precursor cells (NPCs) was significantly impaired in DG lacking NT-3. Triple labeling for BrdU, the neuronal marker NeuN, and the glial marker GFAP indicated that NT-3 affects the number of newly differentiated neurons, but not glia, in DG. Field recordings revealed a selective impairment in long-term potentiation (LTP) in the lateral, but not medial perforant path-granule neuron synapses. In parallel, the NT-3 mutant mice exhibited deficits in spatial memory tasks. In addition to identifying a novel role for NT-3 in adult NPC differentiation in vivo, our study provides a potential link between neurogenesis, dentate LTP, and spatial memory.  相似文献   

18.
Reinforcement of rat hippocampal LTP by holeboard training   总被引:4,自引:0,他引:4       下载免费PDF全文
Hippocampal long-term potentiation (LTP) can be dissociated in early-LTP lasting 4-5 h and late-LTP with a duration of more than 8 h, the latter of which requires protein synthesis and heterosynaptic activity during its induction. Previous studies in vivo have shown that early-LTP in the dentate gyrus can protein synthesis-dependently be transformed (reinforced) into late-LTP by the association of arousing novel environmental stimuli. Here we show that consolidation of spatial memory also reinforces early-LTP in the dentate gyrus. Both memory consolidation and LTP-reinforcement depend on protein synthesis. Four groups of animals were trained by five, seven, eight or 10 trials, respectively, to recognize a fixed pattern of baited holes. The last trial was performed 15 min after tetanus. Errors of long-term reference memory during the last trial were significantly decreased only in the eight- and 10-trial experimental groups compared to pseudo-trained animals. In correlation to this learning effect we found a reinforcement of early-LTP only in these experimental groups compared to controls. The data suggest that the synthesis of new proteins required for spatial reference-memory formation also contributes to LTP maintenance in the hippocampal dentate gyrus.  相似文献   

19.
The neural cell adhesion molecule (NCAM) is known to play a role in developmental and structural processes but also in synaptic plasticity and memory of the adult animal. Recently, FGL, a NCAM mimetic peptide that binds to the Fibroblast Growth Factor Receptor 1 (FGFR-1), has been shown to have a beneficial impact on normal memory functioning, as well as to rescue some pathological cognitive impairments. Whether its facilitating impact may be mediated through promoting neuronal plasticity is not known. The present study was therefore designed to test whether FGL modulates the induction and maintenance of synaptic plasticity in the dentate gyrus (DG) in vivo. For this, we first assessed the effect of the FGL peptide on synaptic functions at perforant path-dentate gyrus synapses in the anesthetized rat. FGL, or its control inactive peptide, was injected locally 60 min before applying high-frequency stimulation (HFS) to the medial perforant path. The results suggest that although FGL did not alter basal synaptic transmission, it facilitated both the induction and maintenance of LTP. Interestingly, FGL also modified the heterosynaptic plasticity observed at the neighboring lateral perforant path synapses. The second series of experiments, using FGL intracerebroventricular infusion in the awake animal, confirmed its facilitating effect on LTP for up to 24 h. Our data also suggest that FGL could alter neurogenesis associated with LTP. In sum, these results show for the first time that enhancing NCAM functions by mimicking its heterophilic interaction with FGFR facilitates hippocampal synaptic plasticity in the awake, freely moving animal.  相似文献   

20.
Kv4 channels regulate the backpropagation of action potentials (b-AP) and have been implicated in the modulation of long-term potentiation (LTP). Here we showed that blockade of Kv4 channels by the scorpion toxin AmmTX3 impaired reference memory in a radial maze task. In vivo, AmmTX3 intracerebroventricular (i.c.v.) infusion increased and stabilized the EPSP-spike (E-S) component of LTP in the dentate gyrus (DG), with no effect on basal transmission or short-term plasticity. This increase in E-S potentiation duration could result from the combination of an increase in excitability of DG granular cells with a reduction of GABAergic inhibition, leading to a strong reduction of input specificity. Radioactive in situ hybridization (ISH) was used to evaluate the amounts of Kv4.2 and Kv4.3 mRNA in brain structures at different stages of a spatial learning task in naive, pseudoconditioned, and conditioned rats. Significant differences in Kv4.2 and Kv4.3 mRNA levels were observed between conditioned and pseudoconditioned rats. Kv4.2 and Kv4.3 mRNA levels were transiently up-regulated in the striatum, nucleus accumbens, retrosplenial, and cingulate cortices during early stages of learning, suggesting an involvement in the switch from egocentric to allocentric strategies. Spatial learning performance was positively correlated with the levels of Kv4.2 and Kv4.3 mRNAs in several of these brain structures. Altogether our findings suggest that Kv4 channels could increase the signal-to-noise ratio during information acquisition, thereby allowing a better encoding of the memory trace.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号