首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jeffrey Bub 《Erkenntnis》1994,41(2):253-273
I formulate the interpretation problem of quantum mechanics as the problem of identifying all possible maximal sublattices of quantum propositions that can be taken as simultaneously determinate, subject to certain constraints that allow the representation of quantum probabilities as measures over truth possibilities in the standard sense, and the representation of measurements in terms of the linear dynamics of the theory. The solution to this problem yields a modal interpretation that I show to be a generalized version of Bohm's hidden variable theory. I argue that unless we alter the dynamics of quantum mechanics, or accept a for all practical purposes solution, this generalized Bohmian mechanics is the unique solution to the problem of interpretation.  相似文献   

2.
On Bohm's formulation of quantum mechanics particles always have determinate positions and follow continuous trajectories. Bohm's theory, however, requires a postulate that says that particles are initially distributed in a special way: particles are randomly distributed so that the probability of their positions being represented by a point in any regionR in configuration space is equal to the square of the wave-function integrated overR. If the distribution postulate were false, then the theory would generally fail to make the right statistical predictions. Further, if it were false, then there would at least in principle be situations where a particle would approach an eigenstate of having one position but in fact always be somewhere very different. Indeed, we will see how this might happen even if the distribution postulate were true. This will help to show how loose the connection is between the wave-function and the positions of particles in Bohm's theory and what the precise role of the distribution postulate is. Finally, we will briefly consider two attempts to formulate a version of Bohm's theory without the distribution postulate.  相似文献   

3.
David Bohm's interpretation of quantum mechanics yields a quantum potential, Q. In his early work, the effects of Q are understood in causal terms as acting through a real (quantum) field which pushes particles around. In his later work (with Basil Hiley), the causal understanding of Q appears to have been abandoned. The purpose of this paper is to understand how the use of certain metaphors leads Bohm away from a causal treatment of Q, and to evaluate the use of those metaphors.  相似文献   

4.
Forrest  Peter 《Synthese》1999,119(3):299-311
While the Phase Space formulation of quantum mechanics has received considerable attention it has seldom been defended as a viable interpretation. In this paper I expound the Phase Space Picture, use it to provide a quasi-classical ‘hidden variables’ interpretation of quantum mechanics and offer a defence of it against various objections. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Bueno  Otávio 《Synthese》2000,125(1-2):33-53
Throughout the last two decades, Newton da Costa and his collaborators have developed some frameworks to help the interpretation of science. Two of them are particularly noteworthy: partial structures and quasi-truth (that provide a way of accommodating the openness and partiality of scientific activity), and quasi-set theory (that allows one to take seriously the idea, put forward by several physicists, that we can't meaningfully apply the notion of identity to quantum particles). In this paper I explore the interconnection between these two frameworks. After reviewing the extant formulations of quasi-truth and quasi-set theory, I suggest a way of combining them, advancing a formulation of quasi-truth in quasi-set theory. In this way, a good sense can be made of the idea that quantum mechanics, if not true, is at least quasi-true. I then explore an application of this combined framework, arguing that it provides a conceptual setting appropriate to overcome two (philosophical) difficulties in van Fraassen's modal interpretation of quantum mechanics.  相似文献   

6.
Giancarlo Ghirardi 《Erkenntnis》1996,45(2-3):349-365
Consideration is given to recent attempts to solve the objectification problem of quantum mechanics by considering nonlinear and stochastic modifications of Schrödinger's evolution equation. Such theories agree with all predictions of standard quantum mechanics concerning microsystems but forbid the occurrence of superpositions of macroscopically different states. It is shown that the appropriate interpretation for such theories is obtained by replacing the probability densities of standard quantum mechanics with mass densities in real space. Criteria allowing a precise characterization of the idea of similarity and difference of macroscopic situations are presented and it is shown how they lead to a theoretical picture which is fully compatible with a macrorealistic position about natural phenomena.  相似文献   

7.
Bedard  Katherine 《Synthese》1998,114(3):405-444
In this paper I discuss how Bohm's interpretation models spin measurements and how the two ways in which spin is a contextual property pertains to the Kochen-Specker theorem. I then present locality principles from which a Bell Inequality can be derived, and I identify which of the locality principles Bohm's interpretation violates at which times. I also present reasons why the spin vector should not be attributed to the Bohmian particles.  相似文献   

8.
Biological order is discussed within the context of the idealist interpretation of quantum mechanics. A quantum mechanism is proposed for quantum speciation and for quantum evolution, in general. It is shown that an extension of neo-Darwinism to include quantum evolution via a quantum mechanism can resolve some of the recent controversies that have rattled evolution theory. It is pointed out that the quantum approach has the further benefit of giving a straightforward insight into the nature of life itself. Experimental support for some aspects of the theory is discussed.  相似文献   

9.
W. M. de Muynck 《Synthese》1995,102(2):293-318
The axiomatic approaches of quantum mechanics and relativity theory are compared with approaches in which the theories are thought to describe readings of certain measurement operations. The usual axioms are shown to correspond with classes of ideal measurements. The necessity is discussed of generalizing the formalisms of both quantum mechanics and relativity theory so as to encompass more realistic nonideal measurements. It is argued that this generalization favours an empiricist interpretation of the mathematical formalisms over a realist one.  相似文献   

10.
There is a long tradition of trying to find a satisfactory interpretation of Everett's relative-state formulation of quantum mechanics. Albert and Loewer recently described two new ways of reading Everett: one we will call the single-mind theory and the other the many-minds theory. I will briefly describe these theories and present some of their merits and problems. Since both are no-collapse theories, a significant merit is that they can take advantage of certain properties of the linear dynamics, which Everett apparently considered to be important, to constrain their statistical laws.  相似文献   

11.
A central problem in the interpretation of non‐relativistic quantum mechanics is to relate the conceptual structure of the theory to the classical idea of the state of a physical system. This paper approaches the problem by presenting an analysis of the notion of an elementary physical proposition. The notion is shown to be realized in standard formulations of the theory and to illuminate the significance of proofs of the impossibility of hidden variable extensions. In the interpretation of quantum mechanics that emerges from this analysis, the philosophically distinctive features of the theory derive from the fact that it seeks to represent a reality of which complete knowledge is essentially unattainable.  相似文献   

12.
Peter E. Hodgson 《Zygon》2000,35(3):505-516
It has been suggested that God can act on the world by operating within the limits set by Heisenberg's uncertainty principle (HUP) without violating the laws of nature. This requires nature to be intrinsically indeterministic. However, according to the statistical interpretation the quantum mechanical wavefunction represents the average behavior of an ensemble of similar systems and not that of a single system. The HUP thus refers to a relation between the spreads of possible values of position and momentum and so is consistent with a fully deterministic world. This statistical interpretation of quantum mechanics is supported by reference to actual measurements, resolves the quantum paradoxes, and stimulates further research. If this interpretation is accepted, quantum mechanics is irrelevant to the question of God's action in the world.  相似文献   

13.
David Lewis is a natural target for those who believe that findings in quantum physics threaten the tenability of traditional metaphysical reductionism. Such philosophers point to allegedly holistic entities they take both to be the subjects of some claims of quantum mechanics and to be incompatible with Lewisian metaphysics. According to one popular argument, the non-separability argument from quantum entanglement, any realist interpretation of quantum theory is straightforwardly inconsistent with the reductive conviction that the complete physical state of the world supervenes on the intrinsic properties of and spatio-temporal relations between its point-sized constituents. Here I defend Lewis's metaphysical doctrine, and traditional reductionism more generally, against this alleged threat from quantum holism. After presenting the non-separability argument from entanglement, I show that Bohmian mechanics, an interpretation of quantum mechanics explicitly recognized as a realist one by proponents of the non-separability argument, plausibly rejects a key premise of that argument. Another holistic worry for Humeanism persists, however, the trouble being the apparently holistic character of the Bohmian pilot wave. I present a Humean strategy for addressing the holistic threat from the pilot wave by drawing on resources from the Humean best system account of laws.  相似文献   

14.
There are now several, realist versions of quantum mechanics on offer. On their most straightforward, ontological interpretation, these theories require the existence of an object, the wavefunction, which inhabits an extremely high‐dimensional space known as configuration space. This raises the question of how the ordinary three‐dimensional space of our acquaintance fits into the ontology of quantum mechanics. Recently, two strategies to address this question have emerged. First, Tim Maudlin, Valia Allori, and her collaborators argue that what I have just called the ‘most straightforward’ interpretation of quantum mechanics is not the correct one. Rather, the correct interpretation of realist quantum mechanics has it describing the world as containing objects that inhabit the ordinary three‐dimensional space of our manifest image. By contrast, David Albert and Barry Loewer maintain the straightforward, wavefunction ontology of quantum mechanics, but attempt to show how ordinary, three‐dimensional space may in a sense be contained within the high‐dimensional configuration space the wavefunction inhabits. This paper critically examines these attempts to locate the ordinary, three‐dimensional space of our manifest image “within” the ontology of quantum mechanics. I argue that we can recover most of our manifest image, even if we cannot recover our familiar three‐dimensional space.  相似文献   

15.
Ingemar Nordin 《Synthese》1979,42(1):71-90
In current philosophical debate Bell's theorem is often refered to as a proof of the impossibility of determinism in nature. It is argued here that this conclusion is wrong. The main consequence of the theorem is the non-local character of quantum theory itself and it is shown how this quality leads to a contradiction with the theory of relativity. If hidden variable theories are impossible, it is so because no empirically founded interpretation at all can be compatible with both quantum mechanics and relativity.  相似文献   

16.
17.
Non-locality, indeterminacy, the meaning of the Schrödinger equation, and quantum measurements are interpretation issues in quantum mechanics that go beyond our typical view of the world through the classical physics lenses of the mechanistic determinism. In “Cosmic Mind?,” Stuart Kauffman offers an interpretation of the Schrödinger equation and quantum measurements that might support a cosmic mind. Robert John Russell in NIODA uses the indeterminacy to offer a mechanism for God to interact with nature. This response reviews these two interpretations of quantum mechanics with respect to the two-slit and EPR experiments and how these two interpretations of quantum mechanics could solve issues of interpretations.  相似文献   

18.
Sergio Martinez 《Synthese》1990,82(1):97-125
An interpretation of quantum mechanics that rejects hidden variables has to say something about the way measurement can be understood as a transformation on states of individual systems, and that leads to the core of the interpretive problems posed by Luders' projection rule: What, if any, is its physical content? In this paper I explore one suggestion which is implicit in usual interpretations of the rule and show that this view does not stand on solid ground. In the process, important aspects of the role played by the projection postulate in the conceptual structure of quantum mechanics will be clarified. It will be shown in particular that serious objections can be raised against the (often implicit) view that identifies the physical relation of compatibility preserved by Luders' rule with the relation of simultaneous measurability.  相似文献   

19.
We describe a series of experimental analogies between fluid mechanics and quantum mechanics recently discovered by a team of physicists. These analogies arise in droplet systems guided by a surface (or pilot) wave. We argue that these experimental facts put ancient theoretical work by Madelung on the analogy between fluid and quantum mechanics into new light. After re-deriving Madelung’s result starting from two basic fluid mechanical equations (the Navier–Stokes equation and the continuity equation), we discuss the relation with the de Broglie–Bohm theory. This allows to make a direct link with the droplet experiments. It is argued that the fluid mechanical interpretation of quantum mechanics, if it can be extended to the general N-particle case, would have a considerable advantage over the Bohm interpretation: it could rid Bohm’s theory of its non-local character.  相似文献   

20.
Lehner  Christoph 《Synthese》1997,110(2):191-216
This paper attempts an interpretation of Everett's relative state formulation of quantum mechanics that avoids the commitment to new metaphysical entities like worlds or minds. Starting from Everett's quantum mechanical model of an observer, it is argued that an observer's belief to be in an eigenstate of the measurement (corresponding to the observation of a well-defined measurement outcome) is consistent with the fact that she objectively is in a superposition of such states. Subjective states corresponding to such beliefs are constructed. From an analysis of these subjective states and their dynamics it is argued that Everett's pure wave mechanics is subjectively consistent with von Neumann's classical formulation of quantum mechanics. It follows from the argument that the objective state of a system is in principle unobservable. Nevertheless, an adequate concept of empirical reality can be constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号