首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to pinpoint the location of a sound source, we make use of a variety of spatial cues that arise from the direction-dependent manner in which sounds interact with the head, torso and external ears. Accurate sound localization relies on the neural discrimination of tiny differences in the values of these cues and requires that the brain circuits involved be calibrated to the cues experienced by each individual. There is growing evidence that the capacity for recalibrating auditory localization continues well into adult life. Many details of how the brain represents auditory space and of how those representations are shaped by learning and experience remain elusive. However, it is becoming increasingly clear that the task of processing auditory spatial information is distributed over different regions of the brain, some working hierarchically, others independently and in parallel, and each apparently using different strategies for encoding sound source location.  相似文献   

2.
An experiment is reported on the effect of six consecutive days of exposure to distortions of binaural time and intensity cues on the localization function for tones of 350, 1000, and 4000 Hz. Tests were conducted under “free-field” conditions. The changes in auditory spatial orientation indicate that adjustments to binaurally distorted temporal and intensive cues can occur. Reorientation does not appear to depend upon the existence of veridical auditory cues.  相似文献   

3.
Studies of auditory localization revealed that where a subject hears a sound is dependent on both his perceived head position and the auditory cues at his ears. If an error is induced between his true and registered head posture, then errors in his auditory localizations of corresponding size and time course result. The presence of visual information prevents the development of postural errors and, consequently, prevents the development of errors in auditory localization, too. These observations are related to the oculogravic illusion and are interpreted as one aspect of the functioning of a spatial reference system involved in the maintenance of the constancies of auditory and visual detection.  相似文献   

4.
The ability of listeners, deprived of prominent interaural time and intensity cues, to locate noise bands differing in width was investigated. To minimize binaural cues, we placed the sound source at various positions in the median sagittal plane. To eliminate binaural cues, we occluded one ear. The stimuli consisted of broadband noise and bands of noise centered at 8.0 kHz. The width of the latter ranged from 1.0 to 6.0 kHz. The results from seven listeners showed that localization proficiency for sounds in the median sagittal plane decreased with decreases in bandwidth for both binaural and monaural listening conditions. This function was less orderly for monaural localization of horizontally positioned sounds. Another consequence of a reduction in bandwidth was an increasing tendency of listeners to select certain loudspeakers over others as the source of the sound. A previous finding showing that localization of sound in the median sagittal plane is more accurate when listening binaurally rather than monaurally was confirmed.  相似文献   

5.
Directional responses to sounds in young gerbils (Meriones unguiculatus)   总被引:1,自引:0,他引:1  
Three experiments were conducted to determine the ability of infant gerbils to approach an auditory stimulus. In the first experiment, gerbil pups, 16-23 days of age, were tested in a circular apparatus with a central start area and a movable sound source located at one of eight positions around the perimeter. Stimuli included high- and low-intensity presentations of a tape-recorded gerbil social call, a broad-band white noise stimulus, and a no-stimulus control condition. The subjects showed a strong tendency to approach the low-intensity social call and a less pronounced tendency to approach the white noise. In the second experiment, gerbil pups were tested in the same apparatus with or without ear blocks to determine the role of binaural cues in directional approach responding. The tendency to approach a low-intensity vocalization was disrupted by obstruction of one ear but not by blocking both ears. Thus, binaural balance was shown to be important for early sound localization. In the third experiment, the tendency to approach a social call was compared at different ages, 12-15, 16-19, 20-23, and 24-27 days after birth. Approach responses were first seen at 16-19 days. The responses continued during the 20-23-day period but began to wane at 24-27 days of age.  相似文献   

6.
人和动物对声源方位的感知和心理确定建立在神经生理基础之上,得到了大量来自神经细胞电生理研究证据的支持。听中枢神经元可通过比较到达两耳声信号的不同特征和参量来体现其精确的声源定位能力。研究表明,声源定位过程是听觉系统复杂综合作用的结果,听觉中脑核团-下丘在这一过程中起着重要作用,下丘中大量双耳听觉反应神经元可编码声音(源)方位信息,甚至双侧下丘间的联合投射也有可能参与双耳听觉反应的调制。  相似文献   

7.
The development of head orientation to auditory stimulation was examined in rat pups at Postnatal Days 8, 11, 14, 17, and 20. The animals were tested in a quiet environment with single bursts of 65 dB (SPL) broad-band noise. A reflexive head turn toward the sound was first seen on Postnatal Day 14 and subsequently on Days 17 and 20. This result demonstrates that the onset of directional auditory responses occurred between Day 11 and Day 14. The role of binaural cues in early sound orientation was examined in 17-day-old pups with monaural ligation of the external meatus. These animals were unable to localize a sound source and consistently turned toward the side of the unligated ear regardless of the position of the stimulus. Thus binaural cues were shown to be important for head orientation to sound in early development. In a separate study, head orientation to high and low frequency tone pips was examined. Directional responses were first seen on Day 12 for a 16-kHz tone and Day 14 for a 2-kHz tone. These results indicate an earlier onset for orientation to high frequency sounds in the rat.  相似文献   

8.
Newborn guinea pigs were tested to determine their ability to approach an auditory stimulus early in development. Observations of the behavior of 1-4-day-old animals in a circular eight-choice maze revealed a pronounced tendency to orient toward and approach a tape-recorded signal of guinea pig vocalizations. The occurrence of approach responses was reduced to chance in animals tested with one ear occluded by wax ear plugs which attenuated but did not totally eliminate sound. The effect of monaural ear blocks was more severe than binaural blocks, which reflects the importance of binaural cues in the maintenance of approach responses to sound. In a second study, the ability of older animals, 11-31 days of age, was examined. Directional approach responses to sound were also evident at this age, and ear plugs disrupted performance only under monaural conditions. Furthermore, in animals raised from birth with monaural ear blocks but tested without ear plugs, there was a subsequent disruption of performance for at least 21 days. These results indicate the importance of binaural cues in the development of early auditory spatial responses and suggest the need for appropriate binaural experience for subsequent localization of sounds.  相似文献   

9.
Summary Models of auditory localization-lateralization assume either a single or different neural systems for the processing of binaural time delay and intensity differences. An experiment was conducted, making use of the effect of sensory adaptation. The results are in favour of assuming a single system which processes both temporal and intensity cues in binaural stimulation.  相似文献   

10.
Weber functions (ΔI/I in dB) for gated 250-Hz tones were studied for monaural and several binaural stimulus configurations (homophasic, and antiphasic with varying phase angle for addition of signal to masker). The various cues for discrimination of signal plus masker from masker alone are functions of intensity increments at one or both ears, an intensity increment at one ear coupled with a decrement at the other, or the introduction of a phase difference between the ears. The decline of the Weber fraction with increasing masker level (the “near miss” to Weber’s law) was confirmed for monaural discrimination over the entire 40-dB range, and a similar rate of decline was found for various binaural stimuli over the lower half of that range. The data also confirm the individual differences found in other studies for sensitivity favoring either interaural amplitude or interaural phase shifts.  相似文献   

11.
The passive sound-localization acuity of Egyptian fruit bats (Rousettus aegyptiacus) was determined using a conditioned-avoidance procedure. The mean minimum audible angle for left-right discrimination for 3 bats was 11.6 degrees--very near the mean for terrestrial mammals. The bats also were able to localize low- and high-frequency pure tones, indicating that they can use both binaural phase-difference and binaural intensity-difference cues to localize sound. Moreover, they were able to use the binaural phase-difference cue up to at least 5.6 kHz, which is higher than other mammals yet tested. The width of the Egyptian fruit bats' field of best vision was 27 degrees. This value is consistent with the hypothesis that the role of passive sound localization is to direct the eyes for visual scrutiny of sound sources. Thus, the passive localization abilities of these echolocating megachiropteran fruit bats do not deviate from the patterns established for nonecholocating mammals.  相似文献   

12.
Simon HJ  Divenyi PL  Lotze A 《Perception》2002,31(7):855-873
The effects of varying interaural time delay (ITD) and interaural intensity difference (IID) were measured in normal-hearing sighted and congenitally blind subjects as a function of eleven frequencies and at sound pressure levels of 70 and 90 dB, and at a sensation level of 25 dB (sensation level refers to the pressure level of the sound above its threshold for the individual subject). Using an 'acoustic' pointing paradigm, the subject varied the IID of a 500 Hz narrow-band (100 Hz) noise (the 'pointer') to coincide with the apparent lateral position of a 'target' ITD stimulus. ITDs of 0, +/-200, and +/-400 micros were obtained through total waveform delays of narrow-band noise, including envelope and fine structure. For both groups, the results of this experiment confirm the traditional view of binaural hearing for like stimuli: non-zero ITDs produce little perceived lateral displacement away from 0 IID at frequencies above 1250 Hz. To the extent that greater magnitude of lateralization for a given ITD, presentation level, and center frequency can be equated with superior localization abilities, blind listeners appear at least comparable and even somewhat better than sighted subjects, especially when attending to signals in the periphery. The present findings suggest that blind listeners are fully able to utilize the cues for spatial hearing, and that vision is not a mandatory prerequisite for the calibration of human spatial hearing.  相似文献   

13.
Unlike humans, not all mammals use both of the binaural cues for sound localization. Whether an animal uses these cues can be determined by testing its ability to localize pure tones; specifically, low frequencies are localized using time-difference cues, and high frequencies are localized using intensity-difference cues. We determined the ability to use binaural cues in 2 New World bats, Phyllostomus hastatus, large omnivores, and Carollia perspicillata, small frugivores, by testing their tone-localization ability using a conditioned avoidance procedure. Both species easily localized high-frequency tones, indicating that they could use the interaural intensity-difference cue. However, neither species was able to use the phase-difference cue to localize either low-frequency pure tones or amplitude-modulated tones (which provided an envelope for additional time analysis). We now know of 3 bat species that cannot use binaural time cues and 2 that can. Further exploration of localization in bats may provide insight into the neural analysis of time cues in species that do not hear low frequencies.  相似文献   

14.
The attention network test (ANT) assesses efficiency across alerting, orienting, and executive components of visual attention. This study examined approaches to assessing auditory attention networks, and performance was compared to the visual ANT. Results showed (1) alerting was sufficiently elicited in a pitch discrimination and sound localization task, although these effects were unrelated, (2) weak orienting of attention was elicited through pitch discrimination, which varied based on ISI and conflict level, but robust orienting of attention was found through sound localization, and (3) executive control was sufficiently assessed in both pitch discrimination and sound localization tasks, but these effects were unrelated. Correlation analysis suggested that, unlike alerting and orienting, sound localization auditory executive control functions tap a shared attention network system. Overall, the results suggest that auditory ANT measures are largely task and modality specific, with sound localization offering potential to assess all three attention networks in a single task.  相似文献   

15.
Xiao M  Wong M  Umali M  Pomplun M 《Perception》2007,36(9):1391-1395
Perceptual integration of audio-visual stimuli is fundamental to our everyday conscious experience. Eye-movement analysis may be a suitable tool for studying such integration, since eye movements respond to auditory as well as visual input. Previous studies have shown that additional auditory cues in visual-search tasks can guide eye movements more efficiently and reduce their latency. However, these auditory cues were task-relevant since they indicated the target position and onset time. Therefore, the observed effects may have been due to subjects using the cues as additional information to maximize their performance, without perceptually integrating them with the visual displays. Here, we combine a visual-tracking task with a continuous, task-irrelevant sound from a stationary source to demonstrate that audio-visual perceptual integration affects low-level oculomotor mechanisms. Auditory stimuli of constant, increasing, or decreasing pitch were presented. All sound categories induced more smooth-pursuit eye movement than silence, with the greatest effect occurring with stimuli of increasing pitch. A possible explanation is that integration of the visual scene with continuous sound creates the perception of continuous visual motion. Increasing pitch may amplify this effect through its common association with accelerating motion.  相似文献   

16.
A comparison of the ability of mammals to localize sound revealed that among the animals examined to date, none of the rodents have been able to localize as accurately as the carnivores. Because all of these rodents are prey animals, the question arises as to whether their poor localization acuity is a phyletic trait of Rodentia or whether it is a trait common to prey species that may be under less selective pressure than predators to localize sound accurately. To answer this question, sound localization acuity was determined in a species that is both predatory and a rodent, the northern grasshopper mouse. Localization thresholds for a single 100-ms noise burst were determined for three grasshopper mice using a conditioned avoidance procedure. Their 50% discrimination threshold of 19 degrees is larger than that of any of the previously tested carnivores and well within the range of other rodents. However, calculations of the binaural sound localization cues available to rodents (based on their head size) suggest that the grasshopper mouse may make more efficient use of the available locus cues than other rodents. Thus, although the grasshopper mouse cannot localize as accurately as carnivores, it appears to be more accurate than predicted for a nonpredatory rodent of its size.  相似文献   

17.
On listening where we look: the fragility of a phenomenon   总被引:1,自引:0,他引:1  
The role of eye position information has been the subject of some debate in the literature on the visual facilitation of auditory localization and attention. In one particularly compelling study, Reisberg, Scheiber, and Potemken (1981) found that fixation position strongly influenced subjects' recall performance in a binaural selective-listening task. The present paper describes repeated failures to demonstrate the eye position effect under conditions similar to those of the original study, thus challenging the robustness of this oft-cited phenomenon of "listening where we look."  相似文献   

18.
Measurements of human sound discrimination and localization are important for basic empirical and clinical applications. After a short survey of other methods such as evoked potentials, the development of a new device to measure human sound localization is described and its use illustrated with some examples. Built from a polyacrylic hemisphere or--in a later version--from an orbicular aluminum frame, the apparatus uses multiple speakers to emit auditory stimuli. The patient sits in the middle of the perimeter and has to press a button when a sound is perceived. In addition, the participant has to identify the correct speaker as the source of the sound. With this method it is possible to map the auditory field.  相似文献   

19.
Similarities have been observed in the localization of the final position of moving visual and moving auditory stimuli: Perceived endpoints that are judged to be farther in the direction of motion in both modalities likely reflect extrapolation of the trajectory, mediated by predictive mechanisms at higher cognitive levels. However, actual comparisons of the magnitudes of displacement between visual tasks and auditory tasks using the same experimental setup are rare. As such, the purpose of the present free-field study was to investigate the influences of the spatial location of motion offset, stimulus velocity, and motion direction on the localization of the final positions of moving auditory stimuli (Experiment 1 and 2) and moving visual stimuli (Experiment 3). To assess whether auditory performance is affected by dynamically changing binaural cues that are used for the localization of moving auditory stimuli (interaural time differences for low-frequency sounds and interaural intensity differences for high-frequency sounds), two distinct noise bands were employed in Experiments 1 and 2. In all three experiments, less precise encoding of spatial coordinates in paralateral space resulted in larger forward displacements, but this effect was drowned out by the underestimation of target eccentricity in the extreme periphery. Furthermore, our results revealed clear differences between visual and auditory tasks. Displacements in the visual task were dependent on velocity and the spatial location of the final position, but an additional influence of motion direction was observed in the auditory tasks. Together, these findings indicate that the modality-specific processing of motion parameters affects the extrapolation of the trajectory.  相似文献   

20.
Binaural localization of 3.0-kHz high- and lowpass noise presented in the median vertical plane (MVP) and lateral vertical plane (LVP) was investigated. We anticipated superior performance when localizing the highpass noise by virtue of the availability of pinna cues. The viability of this supposition was strengthened by monaural localization tests in which performance proficiency for the highpass noise exceeded that for the lowpass noise (p less than .01). The main result showed that binaural localization of proficiency for highpass noise surpassed that for lowpass noise for all listening conditions (p less than .01). However, the importance of binaural temporal and level differences in vertical-plane localization was demonstrated by the highly respectable performances when the lowpass noise was presented in the LVP. Data from binaural localization in the MVP and monaural localization in the LVP suggested that the influence of pinna cues diminishes for source elevations above 45 degrees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号