首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent studies, various regions of the ventral medial prefrontal cortex (vmPFC) have been implicated in at least two potentially different mental functions: reasoning about the minds of other people (social cognition) and processing reward related information (affective evaluation). In this study, we test whether the activation in a specific area of the vmPFC, the para-anterior cingulate cortex (PACC), correlates with the reward value of stimuli in general or is specifically associated with social cognition. Participants performed a time estimation task with trial-to-trial feedback in which reward and social context were manipulated separately. Reward was manipulated by giving either positive or negative feedback in the form of small squirts of fluid delivered orally. Social context was manipulated by instructing participants that positive and negative feedback was determined by another person or a computer. The data demonstrate a main effect of feedback, but not social context, in the PACC, suggesting that this area of the vmPFC serves a general function in evaluating and/or representing reward value. In addition, activity in a more anterior subregion of the vmPFC demonstrated reward-related sensitivity only in the social context. Another area that showed a similar interaction was the subgenual cingulate, but this region was only sensitive to negative feedback in the social condition. These findings suggest that, within the vmPFC, the PACC subserves primarily an affective function, whereas in other regions social context can modulate affective responses.  相似文献   

2.
This fMRI study investigated the neural correlates of reward-related trial-and-error learning in association with changing degrees of stimulus-outcome predictabilities. We found that decreasing predictability was associated with increasing activation in a frontoparietal network. Only maximum predictability was associated with signal decreases across the learning process. The receipt of monetary reward revealed activation in the striatum and associated frontoparietal regions. Present data indicate that during reward-related learning, high uncertainty forces areas relevant for cognitive control to remain activated. In contrast, learning on the basis of predictable stimulus-outcome associations enables the brain to reduce resources in association with the processes of prediction.  相似文献   

3.
A number of prior fMRI studies have focused on the ways in which the midbrain dopaminergic reward system coactivates with hippocampus to potentiate memory for valuable items. However, another means by which people could selectively remember more valuable to-be-remembered items is to be selective in their use of effective but effortful encoding strategies. To broadly examine the neural mechanisms of value on subsequent memory, we used fMRI to assess how differences in brain activity at encoding as a function of value relate to subsequent free recall for words. Each word was preceded by an arbitrarily assigned point value, and participants went through multiple study–test cycles with feedback on their point total at the end of each list, allowing for sculpting of cognitive strategies. We examined the correlation between value-related modulation of brain activity and participants’ selectivity index, which measures how close participants were to their optimal point total, given the number of items recalled. Greater selectivity scores were associated with greater differences in the activation of semantic processing regions, including left inferior frontal gyrus and left posterior lateral temporal cortex, during the encoding of high-value words relative to low-value words. Although we also observed value-related modulation within midbrain and ventral striatal reward regions, our fronto-temporal findings suggest that strategic engagement of deep semantic processing may be an important mechanism for selectively encoding valuable items.  相似文献   

4.
Affective processing is one domain that remains relatively intact in healthy aging. Investigations into the neural responses associated with reward anticipation have revealed that older and younger adults recruit the same midbrain reward regions, but other evidence suggests this recruitment may differ depending on the valence (gain, loss) of the incentive cue. The goal of the current study was to examine functional covariance during gain and loss feedback in younger and healthy older adults. A group of 15 older adults (mean age = 68.5) and 16 younger adults (mean age = 25.4) completed a revised Monetary Incentive Delay task (rMID; Knutson, Westdorp, Kaiser, &; Hommer, 2000) while in the fMRI scanner. The rMID is a reaction time task where successful performance, either gaining a reward or avoiding a loss, is defined by hitting a button during the brief presentation of a visual target. Participants receive gain and loss anticipation cues before each trial and feedback after each trial with four possible outcomes: +$5.00, +0.00, -$5.00, and -Affective processing is one domain that remains relatively intact in healthy aging. Investigations into the neural responses associated with reward anticipation have revealed that older and younger adults recruit the same midbrain reward regions, but other evidence suggests this recruitment may differ depending on the valence (gain, loss) of the incentive cue. The goal of the current study was to examine functional covariance during gain and loss feedback in younger and healthy older adults. A group of 15 older adults (mean age = 68.5) and 16 younger adults (mean age = 25.4) completed a revised Monetary Incentive Delay task (rMID; Knutson, Westdorp, Kaiser, & Hommer, 2000) while in the fMRI scanner. The rMID is a reaction time task where successful performance, either gaining a reward or avoiding a loss, is defined by hitting a button during the brief presentation of a visual target. Participants receive gain and loss anticipation cues before each trial and feedback after each trial with four possible outcomes: +$5.00, +0.00, -$5.00, and -$0.00. Using seed-voxel partial least squares analyses, with seed voxels in the caudate and ventromedial prefrontal cortex, whole-brain functional covariance revealed that younger and older adults engage the same network of regions to support general feedback processing. However, older adults engaged two additional networks to support processing of negative feedback, gain_miss (+0), loss_miss (-$5), and loss_hit (?0), specifically. These findings are in line with theories of a positivity effect in aging and may have implications for reward-stimulus learning and decision making following performance-contingent negative feedback.  相似文献   

5.
Incentive processing is a critical component of a host of cognitive processes, including attention, motivation, and learning. Neuroimaging studies have clarified the neural systems underlying processing of primary and secondary rewards in adults. However, current reward paradigms have hindered comparisons across these reward types as well as between age groups. To address methodological issues regarding the timing of incentive delivery (during scan vs. postscan) and the age-appropriateness of the incentive type, we utilized fMRI and a modified version of a card-guessing game (CGG), in which candy pieces delivered postscan served as the reinforcer, to investigate neural responses to incentives. Healthy young adults 22–26 years of age won and lost large and small amounts of candy on the basis of their ability to guess the number on a mystery card. BOLD activity was compared following candy gain (large/small), loss (large/small), and neutral feedback. During candy gains, adults recruited regions typically involved in response to monetary and other rewards, such as the caudate, putamen, and orbitofrontal cortex. During losses, they displayed greater deactivation in the hippocampus than in response to neutral and gain feedback. Additionally, individual-difference analyses suggested a negative relationship between reward sensitivity (assessed by the Behavioral Inhibition/Behavioral Activation Scales) and the difference between high- and low-magnitude losses in the caudate and lateral orbitofrontal cortex. Also within the striatum, greater punishment sensitivity was positively related to the difference in activity following high as compared to low gains. Overall, these results show strong overlap with those from previous monetary versions of the CGG and provide a baseline for future work with developmental populations.  相似文献   

6.
The Dimensional Change Card Sort (DCCS) is one of the most widely used measures of preschool executive function, yet relatively little is known about how altering emotional demands of the task affects DCCS performance. This study examined the effects of emotionally evocative reward-related feedback on preschool children's performance on the DCCS in a sample of 105 children aged 3.5–4.5 years. In a within-subjects design, children completed the standard DCCS and a modified version of the DCCS in which sticker rewards were gained or lost after each trial. With a reward at stake, children were more accurate but had slower reaction time on the post-switch DCCS. Another sample (N = 20) of 3.5- to 4.5-year-olds who completed the standard DCCS twice without reward showed no change in performance, indicating results are not due to practice effects. Findings demonstrate preschool children's ability to adjust their approach to the DCCS in the presence of emotionally evocative reward-related feedback by prioritizing accuracy over speed. Trial-by-trial reward-related feedback may facilitate cognitive control in early childhood.  相似文献   

7.
In this paper we examine the evidence for human brain areas dedicated to visual or auditory word form processing by comparing cortical activation for auditory word repetition, reading, picture naming, and environmental sound naming. Both reading and auditory word repetition activated left lateralised regions in the frontal operculum (Broca's area), posterior superior temporal gyrus (Wernicke's area), posterior inferior temporal cortex, and a region in the mid superior temporal sulcus relative to baseline conditions that controlled for sensory input and motor output processing. In addition, auditory word repetition increased activation in a lateral region of the left mid superior temporal gyrus but critically, this area is not specific to auditory word processing, it is also activated in response to environmental sounds. There were no reading specific activations, even in the areas previously claimed as visual word form areas: activations were either common to reading and auditory word repetition or common to reading and picture naming. We conclude that there is no current evidence for cortical sites dedicated to visual or auditory word form processing.  相似文献   

8.
It is widely assumed that prediction plays a substantial role in language processing. However, despite numerous studies demonstrating that contextual information facilitates both syntactic and lexical–semantic processing, there exists no direct evidence pertaining to the neural correlates of the prediction process itself. Using magnetoencephalography (MEG), this study found that brain activity was modulated by whether or not a specific noun could be predicted, given a picture prime. Specifically, before the noun was presented, predictive contexts triggered enhanced activation in left mid-temporal cortex (implicated in lexical access), ventro-medial prefrontal cortex (previously associated with top-down processing), and visual cortex (hypothesized to index the preactivation of predicted form features), successively. This finding suggests that predictive language processing recruits a top-down network where predicted words are activated at different levels of representation, from more ‘abstract’ lexical–semantic representations in temporal cortex, all the way down to visual word form features. The same brain regions that exhibited enhanced activation for predictive contexts before the onset of the noun showed effects of congruence during the target word. To our knowledge, this study is one of the first to directly investigate the anticipatory stage of predictive language processing.  相似文献   

9.
ABSTRACT— Functional imaging data were acquired during performance of a reward-contingency task in a unique cohort of adolescents (ages 14–18 years) who were characterized since infancy on measures of temperamental behavioral inhibition. Neural activation was examined in striatal structures (nucleus accumbens, putamen, caudate) with a known role in facilitating response to salient reward-related cues. Adolescents with a history of behavioral inhibition, relative to noninhibited adolescents, showed increased activation in the nucleus accumbens when they believed their selection of an action would affect reward outcome. Neural responses did not differ between the two groups when participants made a prespecified response that they knew would result in reward or when they produced random motor responses that they knew would not be rewarded. These results link inhibited temperament and perturbed neural responses to reward-contingency cues.  相似文献   

10.
以汉语双字构成的真词与假词为实验材料,22名大学生为被试,采用功能性近红外脑成像技术(f NIRS)和事件相关设计,考察被试在完成词汇判断任务时的大脑激活模式,探索汉语双字词在心理词典中的表征方式。结果发现:(1)在完成真假词判断任务时,被试大脑左侧额叶和左侧颞叶均被激活;(2)与判断假词相比,被试在判断真词时显著地激活左额上回和左额中回。这一结果说明汉语双字词在心理词典中是混合表征的。  相似文献   

11.
12.
The capture of attention by stimuli previously associated with reward has been demonstrated across a wide range of studies. Such value-based attentional priority appears to be robust, and cases where reward feedback fails to modulate subsequent attention have not been reported. However, individuals differ in their sensitivity to external rewards, and such sensitivity is abnormally blunted in depression. Here, we show that depressive symptomology is accompanied by insensitivity to value-based attentional bias. We replicate attentional capture by stimuli previously associated with reward in a control sample and show that these same reward-related stimuli do not capture attention in individuals experiencing symptoms of depression. This sharp contrast in performance indicates that value-based attentional biases depend on the normal functioning of the brain's reward system and suggests that a failure to preferentially attend to reward-related information may play a role in the experience of depression.  相似文献   

13.
The goal of the present study was to elucidate the role of the human striatum in learning via reward and punishment during an associative learning task. Previous studies have identified the striatum as a critical component in the neural circuitry of reward-related learning. It remains unclear, however, under what task conditions, and to what extent, the striatum is modulated by punishment during an instrumental learning task. Using high-resolution functional magnetic resonance imaging (fMRI) during a reward- and punishment-based probabilistic associative learning task, we observed activity in the ventral putamen for stimuli learned via reward regardless of whether participants were correct or incorrect (i.e., outcome). In contrast, activity in the dorsal caudate was modulated by trials that received feedback--either correct reward or incorrect punishment trials. We also identified an anterior/posterior dissociation reflecting reward and punishment prediction error estimates. Additionally, differences in patterns of activity that correlated with the amount of training were identified along the anterior/posterior axis of the striatum. We suggest that unique subregions of the striatum--separated along both a dorsal/ventral and anterior/posterior axis--differentially participate in the learning of associations through reward and punishment.  相似文献   

14.
Neurobiological models suggest that adolescents are driven by an overactive ventral striatum (VS) response to rewards that may lead to an adolescent increase in risk-taking behavior. However, empirical studies showed mixed findings of adolescents’ brain response to rewards. In this study, we aimed to elucidate the relationship between reward-related brain activation and risky decision-making. In addition, we examined effects of age, puberty, and individuals’ reward sensitivity. We collected two datasets: Experiment 1 reports cross-sectional brain data from 75 participants (ages 10–25) who played a risky decision task. Experiment 2 presents a longitudinal extension in which a subset of these adolescents (n = 33) was measured again 2 years later. Results showed that (1) a reward-related network including VS and medial PFC was consistently activated over time, (2) the propensity to choose the risky option was related to increased reward-related activation in VS and medial PFC, and (3) longitudinal comparisons indicated that self-reported reward sensitivity was specifically related to VS activation over time. Together, these results advance our insights in the brain circuitry underlying reward processing across adolescence.  相似文献   

15.
Prior research on the neural bases of syntactic comprehension suggests that activation in the left inferior frontal gyrus (lIFG) correlates with the processing of word order variations. However, there are inconsistencies with respect to the specific subregion within the IFG that is implicated by these findings: the pars opercularis or the pars triangularis. Here, we examined the hypothesis that the dissociation between pars opercularis and pars triangularis activation may reflect functional differences between clause-medial and clause-initial word order permutations, respectively. To this end, we directly compared clause-medial and clause-initial object-before-subject orders in German in a within-participants, event-related fMRI design. Our results showed increased activation for object-initial sentences in a bilateral network of frontal, temporal and subcortical regions. Within the lIFG, posterior and inferior subregions showed only a main effect of word order, whereas more anterior and superior subregions showed effects of word order and sentence type, with higher activation for sentences with an argument in the clause-initial position. These findings are interpreted as evidence for a functional gradation of sequence processing within the left IFG: posterior subportions correlate with argument prominence-based (local) aspects of sequencing, while anterior subportions correlate with aboutness-based aspects of sequencing, which are crucial in linking the current sentence to the wider discourse. This proposal appears compatible with more general hypotheses about information processing gradients in prefrontal cortex (Koechlin & Summerfield, 2007).  相似文献   

16.
Functional magnetic resonance imaging was used to examine functional anatomy of attention to social (eye gaze) and nonsocial (arrow) communicative stimuli in late childhood and in a disorder defined by atypical processing of social stimuli, Autism Spectrum Disorders (ASD). Children responded to a target word ('LEFT'/'RIGHT') in the context of a distracting arrow or averted gaze pointing in a direction that was congruent, incongruent, or neutral (bar without arrowheads, central gaze) relative to the target word. Despite being irrelevant to the target task, both arrow and averted gaze facilitated responses (Congruent vs. Neutral trials) to the same extent in the two groups and led to interference (Incongruent vs. Congruent trials), which was greater from arrows in ASD than control children. In the brain, interaction between group and distracter-domain was observed in frontal-temporal regions during facilitation and frontal-striatal regions during interference. During facilitation, regions associated with attention to gaze in control children (left superior temporal sulcus, premotor) were associated with attention to arrows in ASD children; gaze was associated with medial temporal involvement in ASD children. During interference, regions associated with arrows in control children (anterior cingulate, right caudate) were activated in response to gaze in ASD children; further, left dorsolateral prefrontal cortex, a region not observed in control children, was activated during gaze-interference in ASD children. Thus, functional anatomy was atypical in ASD children during spontaneous processing of social and nonsocial communicative cues.  相似文献   

17.
Cultural differences in neural function associated with object processing   总被引:1,自引:0,他引:1  
Behavioral research suggests that Westerners focus more on objects, whereas East Asians attend more to relationships and contexts. We evaluated the neural basis for these cultural differences in an event-related fMRI study. East Asian and American participants incidentally encoded pictures of (1) a target object alone, (2) a background scene with no discernable target object, and (3) a distinct target object against a meaningful background. Americans, relative to East Asians, activated more regions implicated in object processing, including bilateral middle temporal gyrus, left superior parietal/angular gyrus, and right superior temporal/supramarginal gyrus. In contrast to the cultural differences in object-processing areas, few differences emerged in background-processing regions. These results suggest that cultural experiences subtly direct neural activity, particularly for focal objects, at an early stage of scene encoding.  相似文献   

18.
Mental state reasoning or theory-of-mind has been the subject of a rich body of imaging research. Although such investigations routinely tap a common set of regions, the precise function of each area remains a contentious matter. With the help of functional magnetic resonance imaging (fMRI), we sought to determine which areas are involved when processing mental state or intentional metarepresentations by focusing on the relational aspect of such representations. Using non-intentional relational representations such as spatial relations between persons and between objects as a contrast, the results ascertained the involvement of the precuneus, the temporal poles, and the medial prefrontal cortex in the processing of intentional representations. In contrast, the anterior superior temporal sulcus and the left temporo-parietal junction were implicated when processing representations that refer to the presence of persons in relational contexts in general. The right temporo-parietal junction, however, was specifically activated for persons entering spatial relations. The level of representational complexity, a previously unexplored factor, was also found to modulate the neural response in some brain regions, such as the medial prefrontal cortex and the right temporo-parietal junction. These findings highlight the need to take into account the critical roles played by an extensive network of neural regions during mental state reasoning.  相似文献   

19.
Classical conditioning of the nictitating membrane response requires a specific temporal interval between conditioned stimulus and unconditioned stimulus, and produces an increase in Protein Kinase C (PKC) activation in Purkinje cells. To evaluate whether biochemical interactions within the Purkinje cell may explain the temporal sensitivity, a model of PKC activation by Ca2+, diacylglycerol (DAG), and arachidonic acid (AA) is developed. Ca2+ elevation is due to CF stimulation and IP3 induced Ca2+ release (IICR). DAG and IP3 result from PF stimulation, while AA results from phospholipase A2 (PLA2). Simulations predict increased PKC activation when PF stimulation precedes CF stimulation by 0.1 to 3 s. The sensitivity of IICR to the temporal relation between PF and CF stimulation, together with the buffering system of Purkinje cells, significantly contribute to the temporal sensitivity.  相似文献   

20.
Dissociations in the recognition of specific classes of words have been documented in brain-injured populations. These include deficits in the recognition and production of morphologically complex words as well as impairments specific to particular syntactic classes such as verbs. However, functional imaging evidence for distinctions among the neural systems underlying these dissociations has been inconclusive. We explored the neural systems involved in processing different word classes in a functional Magnetic Resonance Imaging study, contrasting four groups of words co-varying morphological complexity (simple, monomorphemic words vs complex derived or inflected words) and syntactic class (verbs vs nouns/adjectives). Subtraction of word from letter string processing showed activation in left frontal and temporal lobe regions consistent with prior studies of visual word processing. No differences were observed for morphologically complex and simple words, despite adequate power to detect stimulus specific effects. A region of posterior left middle temporal gyrus showed significantly increased activation for verbs. Post hoc analyses showed that this elevated activation could also be related to semantic properties of the stimulus items (verbs have stronger action associations than nouns, and action association is correlated with activation). Results suggest that semantic as well as syntactic factors should be considered when assessing the neural systems involved in single word comprehension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号