首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In three experiments, we examined the ability of listeners to discriminate the duration of temporal gaps (silent intervals) and the influence of other temporal stimulus properties on their performance. In the first experiment, gap-duration discrimination thresholds were measured either in continuous noise or with noise markers with durations of 3 and 300 ms. Thresholds measured with 300-ms markers differed from those measured in continuous noise or with 3-ms markers. In the second experiment, stimuli consisting of a gap between two discrete markers were generated such that the gap duration, the onset-to-onset duration between markers, and the duration of the first marker were pseudorandomized across trials. Listeners’ responses generally were consistent with the cue that was identified as the target cue from among the three cues in each block of trials, but the data suggested that the onset-to-onset cue was particularly salient in all conditions. Using a modified method-of-adjustment procedure in the third experiment, subjects were instructed to discriminate between the durations of gaps in discrete markers of different durations in two intervals, where the gap duration in one interval was adapted to measure the point of subjective equality. Without feedback, listeners tended to equate the onset-to-onset times of the markers rather than the gap durations. Overall, the results indicated that listeners’ judgments of silent gaps between two discrete markers are strongly influenced by the onset-to-onset time, or rhythm, of the markers.  相似文献   

2.
In a series of three experiments, the effect of marker duration on temporal discrimination was evaluated with empty auditory intervals bounded by markers ranging from 3 to 300 msec or presented as a gap within a continuous tone. As a measure of performance, difference thresholds in relation to a base duration of 50 msec were computed. Performance on temporal discrimination was significantly better with markers ranging from 3 to 150 msec than with markers ranging from 225 to 300 msec or under the gap condition. However, within each range of marker duration (3–150 msec; 225–300 msec or gap) performance did not differ significantly. A fourth experiment provided evidence that the effect of marker duration cannot be explained in terms of marker-induced masking. A good approximation of the relationship between marker duration and temporal discrimination performance in the present experiments is a smooth step function, which can account for 99.3% of the variance of mean discrimination performance. Thus, the findings of the present study point to the conclusion that two different mechanisms are used in the processing of temporal information, depending on the duration of the auditory markers. The tradeoff point for the hypothetical shift from one timing mechanism to the other may be found at a marker duration of approximately 200 msec.  相似文献   

3.
A sound that is briefly interrupted by a silent gap is perceived as discontinuous. However, when the gap is filled with noise, the sound may be perceived as continuing through the noise. It has been shown that this continuity illusion depends on the masking of the omitted target sound, but the underlying mechanisms have yet to be quantified thoroughly. In this article, we systematically quantify the relation between perceived continuity and the duration, relative power, or notch width of the interrupting broadband noise for interrupted and noninterrupted amplitude-modulated tones at different frequencies. We fitted the psychometric results in order to estimate the range of the noise parameters that induced auditory grouping. To explain our results within a common theoretical framework, we applied a power spectrum model to thedifferent masking resultsand estimated the critical bandwidth of the auditory filter that may be responsible for the continuity illusion. Our results set constraints on the spectral resolution of the mechanisms underlying the continuity illusion and provide a stimulus set that can be readily applied for neurophysiological studies of its neural correlates.  相似文献   

4.
The detection of a silent interval, or gap, placed in the temporal center of a gated noise burst was investigated. The gated noise masker ranged from 2 to 400 msec in duration. For long noises, the duration, Δ, of the just-detectable gap remained fixed at about 2.8 msec. Progressively shortening the duration of the noise did not affect Δ until the duration was approximately 20 msec; thereafter, decreasing the noise duration improved detectability of the gap. In a second experiment, continuous noise filled the temporal gap, although the decibel difference between the noise in the gap and the noise surrounding the gap was always at least 5 dB. The level of noise filling the gap did not greatly affect Δ. The third experiment was similar to the first, except that the signal was a click rather than a gap. The results for both gaps and clicks were fitted by a model assuming a sliding integrator.  相似文献   

5.
Phillips DP  Smith JC 《Perception》2004,33(3):371-378
We obtained data on within-channel and between-channel auditory temporal gap-detection acuity in the normal population. Ninety-five normal listeners were tested for gap-detection thresholds, for conditions in which the gap was bounded by spectrally identical, and by spectrally different, acoustic markers. Separate thresholds were obtained with the use of an adaptive tracking method, for gaps delimited by narrowband noise bursts centred on 1.0 kHz, noise bursts centred on 4.0 kHz, and for gaps bounded by a leading marker of 4.0 kHz noise and a trailing marker of 1.0 kHz noise. Gap thresholds were lowest for silent periods bounded by identical markers--'within-channel' stimuli. Gap thresholds were significantly longer for the between-channel stimulus--silent periods bounded by unidentical markers (p < 0.0001). Thresholds for the two within-channel tasks were highly correlated (R = 0.76). Thresholds for the between-channel stimulus were weakly correlated with thresholds for the within-channel stimuli (1.0 kHz, R = 0.39; and 4.0 kHz, R = 0.46). The relatively poor predictability of between-channel thresholds from the within-channel thresholds is new evidence on the separability of the mechanisms that mediate performance of the two tasks. The data confirm that the acuity difference for the tasks, which has previously been demonstrated in only small numbers of highly trained listeners, extends to a population of untrained listeners. The acuity of the between-channel mechanism may be relevant to the formation of voice-onset time-category boundaries in speech perception.  相似文献   

6.
A signal detection experiment was carried out to test the hypothesis that the detectability of abrief gap of fixed duration in a pulse of light would vary with its temporal location in the pulse. For five of six Os, as the gap occurred later and later in the pulse, gap detectability increased until just prior to the end of the pulse, where a sharp decrease was found. The finding was replicated in a seventh O and the decrease in detectability near the end was found to be attributable to the temporal proximity of the end of the pulse. The results are interpreted in terms of the effects of light adaptation and masking.  相似文献   

7.
Two experiments tested six predictions derived from the assumptions underlying the luminance summation-contrast reduction explanation for certain instances of forward and backward masking effects. The predictions concerned the circumstances under which masking would occur and also that forward masking would be more extensive than backward masking under specified luminance arrangements. All six predictions were confirmed.  相似文献   

8.
An investigation was conducted into the interaction of the forward and backward masking effects of unpatterned visual stimuli. It was found that detection of a test spot was easier under conditions that should have provided both forward and backward masking than under either forward masking or backward masking alone. The implications for an integration theory of masking are discussed, and the findings are contrasted with findings on the interaction of forward and backward masking by dynamic visual noise.  相似文献   

9.
Temporal masking of clicks by noise was investigated using forward and backward masking paradigms. Both the noise duration and the temporal separation, ΔT, between the click and noise were varied. For very brief ΔTs (100 microsec) and for very long ΔTs (100 msec), the duration of the masker did not greatly affect the click threshold. However, for intermediate ΔTs (3 msec), the threshold increased by as much as 44 dB as the noise duration increased from 0.1 to 100 msec. Temporal weighting functions, which describe the relative effectiveness of the noise as a function of ΔT, were computed from these data.  相似文献   

10.
Bachmann T  Luiga I  Põder E 《Perception》2005,34(2):139-153
In part I we showed that with spatially non-overlapping targets and masks both local metacontrast-like interactions and attentional processes are involved in backward masking. In this second part we extend the strategy of varying the contents of masks to pattern masking where targets and masks overlap in space, in order to compare different masking theories. Images of human faces were backward-masked by three types of spatially quantised masks (the same faces as targets, faces different from targets, and Gaussian noise with power spectra typical for faces). Configural characteristics, rather than the spectral content of the mask, predicted the extent of masking at relatively long stimulus onset asynchronies (SOAs). This poses difficulties for the theory of transient-on-sustained inhibition as the principal mechanism of masking and also for local contour interaction being a decisive factor in pattern masking. The scale of quantisation had no effect on the masking capacity of noise masks and a strong effect on the capacity of different-face masks. Also, the decrease of configural masking with an increase in the coarseness of the quantisation of the mask highlights ambiguities inherent in the re-entrance-based substitution theory of masking. Different masking theories cannot solve the problems of masking separately. They should be combined in order to create a complex, yet comprehensible mode of interaction for the different mechanisms involved in visual backward masking.  相似文献   

11.
In the present study we consider the question of interaction between the forward and backward masking effects of dynamic visual noise (DVN) on the recognition of alphabetic characters composed of the same type of dots as those composing the DVN. The results of our experiments indicate that the two effects strongly interact so that both the duration and magnitude of the combined effect is far greater than would have been predicted by an algehraic model. Speculations about possible explanatory assumptions are presented.  相似文献   

12.
Studies of binaural perception have indicated that subjects are able to use temporal information available in high-frequency regions of the spectrum to lateralize high-frequency waveforms but not to detect these waveforms in masking noise. The present experiments demonstrate that although high-frequency interaural difference cues are relatively ineffective in simultaneous and forward masking, they can be utilized in backward masking. In Experiment 1, large maskinglevel differences were found in backward masking for high-frequency transients presented either monaurally or with an interaural temporal delay. Experiments 2–4 examined fringe masking, effects of masker duration, and combined forward-backward masking for both high- and lowfrequency transients presented with interaural differences in phase and intensity. The results are interpreted as support for the view that the auditory system is organized into parallel shortand long-term integration systems specialized for processing transient and sustained aspects of acoustic stimulation. It is suggested that information from the two integrators is combined when analysis of interaural differences within each of the systems yields similar estimates of spatial location.  相似文献   

13.
Two experiments investigated the properties of visual persistence as functions of spatial frequency, stimulus duration, and pattern-specific adaptation. In Experiment 1, increasing the duration of high spatial-frequency gratings from 50 to 500 msec decreased the duration of visual persistence produced by that grating to an asymptotic level. However, low-frequency gratings produced a constant estimate of visual persistence independent of presentation time. Also, spatial-frequency specific adaptation reduced the persistence of the high-frequency gratings to this asymptotic level, but the lower frequency persistence estimates already at this level were unaffected (Experiment 2). These findings are related to possible temporal properties of the sustained and transient visual systems.  相似文献   

14.
Matsuno T  Tomonaga M 《Perception》2008,37(8):1258-1268
We used the visual-masking paradigm to compare temporal characteristics of chimpanzee vision with those of humans. Two types of masking experiments were conducted. One type involved masking by noise, in which the visibility of the geometric pattern target was tested with a spatially overlapping noise as the mask stimulus. The other type involved paracontrast and metacontrast masking, in which the mask stimuli flanked but did not spatially overlap the target stimuli. Temporal characteristics regarding the visibility of target stimuli, displayed as functions of temporal asynchrony between target and mask stimuli, differed with the mask type in chimpanzees as in humans. Peak deterioration in visibility occurred at the point of minimum temporal asynchrony both in forward and backward masking by noise, but was not at 0 ms temporal asynchrony when the target and mask stimuli did not spatially overlap. These results suggest that chimpanzees and humans share the underlying mechanisms in two kinds of temporal inhibition caused by spatially overlapping and non-overlapping mask stimuli.  相似文献   

15.
Izumi A 《Perception》1999,28(4):437-444
Duration-discrimination thresholds of the silent interval (gap) between two successive tones (markers) were measured in four Japanese monkeys. The task was serial discrimination, and monkeys were required to release the lever when the gap duration decreased from 200 ms. Monkeys successfully acquired the task, and gap thresholds of monkeys were revealed to be larger than previous data with human subjects. Gap thresholds were not affected by marker frequency when the two markers were identical in frequency, though the thresholds increased when large frequency differences existed between markers. The effect of marker frequency disparity on gap thresholds in monkeys is discussed in terms of the difficulty in integrating information from discrete frequency channels.  相似文献   

16.
A white noise (60 dB SPL) was always present except for brief silent periods (“gaps”) which occurred just before an eyelid reflex was elicited in human volunteers by a brief innocuous shock to the forehead. In Experiment 1 (n=8), 10-msec gaps (“S1”) were given 40, 80, 120, 160, or 200 msec before the shock (“S2”). Compared with S2-alone trials, the reflex was inhibited by about 50% at intervals of 80 msec and beyond. Experiment 2 (n=12) first provided detection thresholds for gaps using a simple version of the method of limits: on average a gap of 5.4 msec duration was just detected. Then gaps of 0, 2, 4, 6, 8, and 10 msec were given in random order, each 100 msec before S2. The 4-msec stimulus was an effective inhibitor of the reflex, and inhibition further increased on to 6- and then to 8-msec durations. A comparison of the values obtained on reflex inhibition with the 5.4-msec threshold obtained with the conventional psycho-physical test reveals that in humans reflex inhibition provides an objective index of stimulus detection that is at least of sufficient sensitivity to warrant its clinical application. The steady increase in reflex inhibition as gap duration increased from 2 to 8 msec may be of significance for tracing the rate of decay of afferent stimulation following noise offset, as it presumably reflects the growing sensitivity to the resumption of the noise as the duration of the silent period is increased.  相似文献   

17.
Summary Effects of test-mask similarity on the masking function were examined in two experiments. In Experiment 1, random bar patterns were used as test and mask stimuli. Bars were oriented in 135° oblique direction in test stimuli, and in 135° or 45° oblique direction in mask stimuli. The SOA was varied from 0 to 100 ms (backward masking). In Experiment 2, red and blue random dot patterns were used as both test and mask stimuli, with SOAs of –100 to 100 ms (forward and backward masking). The subject was asked to report the number of bars or dots as quickly as possible. The results of four subjects in one experiment and five in the other indicated that masking effects were generally greater when the test and mask stimuli were the same in orientation or color than when they were different. Slightly asymmetrical U-shaped functions were obtained both in the same and in different (orientation or color) conditions. A two-factor model with a similarity-related symmetrical integration process and a similarity-unrelated asymmetrical interuption process was considered.Experiment 1 was conducted by the first and third authors at Chiba University, and Experiment 2 was performed by the first and second authors at the University of Tokyo  相似文献   

18.
The present research used a startle amplitude reduction paradigm to investigate the ability of the rat’s auditory system to track rapidly changing acoustic transients. Specifically examined was the ability of brief gaps in otherwise continuous noise to reduce the amplitude of a subsequently elicited acoustic startle reflex. The duration of the gap, time between gap offsetand startle elicitation (the interstimulus interval or ISI), and rise-fall characteristics of the gap were systematically varied. Consistent with previous research, gaps reliably reduced startle amplitude. Gaps 2 msec long were reliably detected, and a 50-msec ISI resulted in the greatest amplitude reduction. Gaps presented at short ISIs produced amplitude reduction that followed a different time course than did gaps presented at longer ISIs. These results may reflect differences in the length oftime available for the processing of the stimulus and may involve two different processes.  相似文献   

19.
In this paper the results of an experiment measuring the masking effects of ultrahigh-density dynamic visual noise (DVN) on character recognition are reported. It is shown that the period in which DVN acts as a mask is not extended beyond that measured with less dense DVN, even when the interval between the DVN dots is as small as 32 μsee. This result permits the rejection of the notion that there are sub threshold “tails” to the period of persistence of the visual store of the DVN dots. These results thus confirm the measurements made with less dense DVN of the duration of the period of persistence that allows confusion between sequential stimulus and mask dots to occur.  相似文献   

20.
The early (R1) and late (R2) components of the cutaneous blink reflex in right-handed humans were recorded in three experiments to examine the lateral symmetry of a simple excitatory process in their brainstem pathways and of the control of the excitability of the pathways by gaps in acoustic noise. Experiment 1 showed that a stimulus below R1-elicitation threshold increased the excitability of the right R1 pathway more than the left but that the rate of decay was similar on both sides. Experiment 2 showed that a brief unilateral gap in noise affected the R1 and R2 reflex pathways bilaterally. Experiment 3 showed that R2 varied with gap duration and that gaps to the left and right ears had indistinguishable effects. The finer temporal resolution of events in the right sensory field of right-handers seen in psychophysical judgments is not seen in the descending control of brainstem excitability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号