首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two groups of participants were trained to be proficient at performing bimanual 90° coordination either at a high (2.5 Hz) or low (0.5 Hz) frequency with both kinesthetic and visual information available. At high frequency, participants trained for twice as long to achieve performance comparable to participants training at low frequency. Participants were then paired within (low-low or high-high) or between (low-high) frequency groups to perform a visually coupled dyadic unimanual 90° coordination task, during which they were free to settle at any jointly determined frequency to synchronize their rhythmic movements. The results showed that the coordination skill was frequency-specific. For dyads with one or both members who had learned the 90° bimanual coordination at low frequency, the performance settled at a low frequency (≈0.5 Hz) with more successfully synchronized trials. For dyads with both members who had learned the 90° bimanual coordination at high frequency, they struggled with the task and performed poorly. The dyadic coordination settled at a higher frequency (≈1.5 Hz) on average, but with twice the variability in settling frequency and significantly fewer synchronized trials. The difference between the dyadic coordination and bimanual tasks was that only visual information was available to couple the movements in the former while both kinesthetic and visual information were available in the latter. Therefore, the high frequency group must have relied on kinesthetic information to perform both coordination tasks while the low frequency group was well able to use visual information for both. In the mixed training pairs, the low frequency trained member of the pair was likely responsible for the better performance. These conclusions were consistent with results of previous studies.  相似文献   

2.
3 groups of 12 Ss performed an index finger letter-writing task with visual information but without kinesthetic cues (+V?K), followed immediately by repeating the same letters without vision (?V?K). All groups performed 6 test trials of + V?K, then ?V?K writing. Group 1 had no experience with the task prior to the test trials, Group 2 practiced the letters without vision with kinesthetic cues (?V+K), while Group 3 had visual and kinesthetic practice (+V+K). Visual cues efficiently guided performance in the absence of kinesthesis, and visual memory traces had a marked reinforcing effect. Further, learned reliance on kinesthetic cues was present even in +V?K performance, but reliance on visual cues did not develop.  相似文献   

3.
The corpus callosum (CC) is the largest white matter tract in the brain. It enables interhemispheric communication, particularly with respect to bimanual coordination. Here, we use diffusion tensor imaging (DTI) in healthy humans to determine the extent to which structural organization of subregions within the CC would predict how well subjects learn a novel bimanual task. A single DTI scan was taken prior to training. Participants then practiced a bimanual visuomotor task over the course of 2 wk, consisting of multiple coordination patterns. Findings revealed that the predictive power of fractional anisotropy (FA) was a function of CC subregion and practice. That is, FA of the anterior CC, which projects to the prefrontal cortex, predicted bimanual learning rather than the middle CC regions, which connect primary motor cortex. This correlation was specific in that FA correlated significantly with performance of the most difficult frequency ratios tested and not the innately preferred, isochronous frequency ratio. Moreover, the effect was only evident after training and not at initiation of practice. This is the first DTI study in healthy adults which demonstrates that white matter organization of the interhemispheric connections between the prefrontal structures is strongly correlated with motor learning capability.  相似文献   

4.
This paper examines the informational activity devoted by the CNS to couple oscillating limbs in order to sustain and stabilize bimanual coordination patterns. Through a double-task paradigm associating a bimanual coordination task and a reaction time (RT) task, we investigated the relation between the stability of preferred bimanual coordination patterns and the central cost expended by the CNS for their stabilization. Ten participants performed in-phase and anti-phase coordination patterns in a dual task condition (coordination + RT) at several frequencies (0.5, 0.75, 1.0, 1.5, and 2.0 Hz), thereby decreasing the stability of the bimanual patterns. Results showed a U-shaped evolution of pattern stability and attentional cost, as a function of oscillation frequency, exhibiting a minimum value at the same frequency. These findings indicate that central cost and pattern stability covary and may share common, high order dynamics. Moreover, the attentional focus given to the bimanual coordination and the RT task was also manipulated by requiring either shared attention or priority to the coordination task. Such a manipulation led to a tradeoff between pattern stability and RT performance: The more stable the pattern, the more costly it is to stabilize. This suggests that stabilizing a coordination pattern incurs a central cost that depends on its intrinsic stability. Conceptual consequences of these results for understanding the relationship between attention and coordination are drawn, and the mechanisms putatively at work in dual tasks are discussed.  相似文献   

5.
Bimanual in-phase and anti-phase patterns were performed in the transverse plane under optimal and degraded proprioceptive conditions, i.e., without and with tendon vibration. Moreover, proprioceptive information was changed midway into each trial to examine on-line reorganization. In addition to the proprioceptive perturbation, the availability of visual information was manipulated to study to which degree sensory information from different modalities interact. Movement patterns performed under identical sensory conditions were compared, i.e., the first 15 s (control) and the 15 s following a change in afferent input (transfer). In the control and transfer conditions, movements with vibrations were less accurate than those without vibrations indicating the influence of optimal proprioceptive information in the calibration and recalibration of intrinsic bimanual movement patterns. Furthermore, pattern stability was affected by the nature of the transfer condition. This indicated that the degree of fluctuations in a sensory transfer situation depended upon the quality of the proprioceptive information experienced in the initial conditions. The influence of visual information was not without importance, although the nature of the coordination mode must be taken into account. In the control conditions, in-phase movements were less stable when vision was absent, whereas anti-phase movements were more stable when vision was not present. This observation was made independent of the available proprioceptive information revealing differences in visual guidance between both coordination modes. In the transfer conditions, pattern stability was similar during the vision and no-vision conditions suggesting a limited influence of visual information in the recalibration process.  相似文献   

6.
The purpose of this study was to investigate the effects of aging and the role of augmented visual information in the acquisition of a new bimanual coordination pattern, namely a 90° relative phase pattern. In a pilot study, younger and older adults received augmented visual feedback in the form of a real-time orthogonal display of both limb movements after every fifth trial. Younger adults acquired this task over three days of practice and retained the task well over periods of one week and one month of no practice while the older adults showed no improvement at all on the task. It was hypothesized that the amount of augmented information was not sufficient for the older adults to overcome the strong tendency to perform natural, intrinsically stable coordination patterns, which consequently prevented them from learning the task. The present study evaluated the age-related role of augmented visual feedback for learning the new pattern. Participants were randomly assigned within age groups to receive either concurrent or terminal visual feedback after every trial in acquisition. In contrast to the pilot study, all of the older adults learned the pattern, although not to the same level as the younger adults. Both younger and older adults benefitted from concurrent visual feedback, but the older adults gained more from the concurrent feedback than the younger adults, relative to terminal feedback conditions. The results suggest that when learning bimanual coordination patterns, older adults are more sensitive to the structure of the practice conditions, particularly the availability of concurrent visual information. This greater sensitivity to the learning environment may reflect a diminished capacity for inhibitory control and a decreased ability to focus attention on the salient aspects of learning the task.  相似文献   

7.
This study investigated how learning a new bimanual coordination pattern affects the attentional resources allotted by the CNS to maintain it throughout the acquisition process. The repertoire of the existing stable coordination patterns was individually evaluated before and after practice in order to detect expected changes with learning. Bistable participants, who initially exhibited stable and accurate coordination patterns at 0° and 180° of relative phase, practiced a 90° pattern, whereas multistable participants, who already mastered the 90° pattern, practiced 135° pattern instead. In a typical dual-task paradigm, all participants had to simultaneously perform a reaction time task that assessed the associated attentional cost. Beyond an overall increase in accuracy, the results revealed a significant decrease in the attentional cost for bistable participants, accompanying the stabilization of the 90° pattern with learning, but not for multistable participants, as the 135° pattern barely stabilized. Pattern stability and attentional cost co-evolve during learning and the process follows two different routes depending on the interplay between the task and the learner’s coordination abilities before practice.  相似文献   

8.
ABSTRACT

The testing effect refers to improved memory after retrieval practice and has been researched primarily with visual stimuli. In two experiments, we investigated whether the testing effect can be replicated when the to-be-learned information is presented auditorily, or visually?+?auditorily. Participants learned Swahili-English word pairs in one of three presentation modalities – visual, auditory, or visual?+?auditory. This was manipulated between-participants in Experiment 1 and within-participants in Experiment2. All participants studied the word pairs during three study trials. Half of participants practiced recalling the English translations in response to the Swahili cue word twice before the final test whereas the other half simply studied the word pairs twice more. Results indicated an improvement in final test performance in the repeated test condition, but only in the visual presentation modality (Experiments 1 and 2) and in the visual?+?auditory presentation modality (Experiment 2). This suggests that the benefits of practiced retrieval may be limited to information presented in a visual modality.  相似文献   

9.
It is well known that the nervous system combines information from different cues within and across sensory modalities to improve performance on perceptual tasks. In this article, we present results showing that in a visual motion-detection task, concurrent auditory motion stimuli improve accuracy even when they do not provide any useful information for the task. When participants judged which of two stimulus intervals contained visual coherent motion, the addition of identical moving sounds to both intervals improved accuracy. However, this enhancement occurred only with sounds that moved in the same direction as the visual motion. Therefore, it appears that the observed benefit of auditory stimulation is due to auditory-visual interactions at a sensory level. Thus, auditory and visual motion-processing pathways interact at a sensory-representation level in addition to the level at which perceptual estimates are combined.  相似文献   

10.
Interlimb and interfinger coordination were examined in a dual-finger tapping paradigm in which 16 subjects performed at preferred frequencies. Three bimanual finger combinations, in random order (2 index; 2 middle; and 1 index and 1 middle), were performed in in-phase and antiphase coordination modes, in addition to 1 unimanual combination (antiphase index-middle). Relative phase means were within 3&percent; accuracy for all conditions. A lower tapping frequency was found in all antiphase vs. in-phase conditions, accompanied by lower phasing variability and lower intrafinger consistency in the antiphase. When frequency was changed from the preferred rate, the 2 coordination modes became more alike in variability and, within the same frequency range, demonstrated no significant differences. The bimanual mixed-fingers tapping tended to have significantly lower phasing values (a small fixed point drift) and higher tapping frequencies than the symmetric conditions. The unimanual task was similar to all other antiphase conditions. Changes in preferred frequency with different coordination modes may be related to differing perceptual informational constraints. Current models addressing natural frequencies of coupled oscillators do not account for the present data.  相似文献   

11.
Much recent research using discrete unimanual tasks has indicated that individuals with Down syndrome (DS) have more difficulty performing verbal-motor tasks as compared to visual-motor tasks (see Perceptual-Motor Behavior in Down Syndrome, Human Kinetics, Champaign, IL, 2000, p. 305 for a review). In continuous tasks, however, individuals with DS perform better when movement is guided by auditory information compared to visual information (Downs Syndr.: Res. Prac. 4 (1996) 25; J. Sport Exercise Psy. 22 (2000) S90). The aim of the present study was to investigate if there are any differences for adults with DS between visual, auditory and verbal guidance in a continuous bimanual task. Ten adults with DS, 10 adults without DS and 10 typically developing children drew lines bimanually towards the body (down) and away from the body (up) following three different guidance conditions: visual (flashing line), auditory (high tone, low tone), and verbal (“up”, “down”). All participants produced mostly in-phase movements and were close to the 1000 ms target time for all guidance conditions. The adults with DS, however, displayed greater variability in their movement time, movement amplitude and bimanual coordination than adults without DS. For all groups, the left hand was slower and more variable in producing the lateral movements than the right hand. The results regarding guidance information suggest that auditory information is beneficial for repetitive bimanual tasks for adults with DS. Possible mechanisms that cause these results will be discussed.  相似文献   

12.
The present research examined two variables regarding the acquisition of a new bimanual coordination pattern: the role of previous experience and the nature of augmented feedback. Two groups of participants acquired a new coordination pattern (135 degrees relative phase) following two sessions of practice of another novel pattern (90 degrees relative phase). Transfer of learning in these groups was compared to two groups that had not previously learned a new pattern, but were nevertheless influenced by coordination patterns that are intrinsic to the task of bimanual relative timing (in-phase, 0 degrees, and anti-phase, 180 degrees). The findings revealed that new learning overshadowed the influence of the intrinsic patterns. Learning was also greatly affected by augmented feedback: dynamic, on-line pursuit tracking information was more effective in transfer than static, terminal feedback. Implications of these findings regarding theoretical constructs in motor learning are discussed.  相似文献   

13.
There is evidence that experience of the sensory consequences, in the absence of practice of the required motor commands, is sufficient to learn new bimanual coordination patterns. This was shown through improvements of an incongruent group who practiced a desired 30° phase offset between the limbs while 1 limb was weighted such that the desired phase relation was achieved when synchronous motor commands were sent to the limbs (P. Atchy-Delama, P. G. Zanone, C. E. Peper, & P. J. Beek, 2005). In addition to testing a similar incongruent and congruent group (i.e., no weight), the authors extended this experiment by removing visual feedback during practice and by including an auditory modeling and passive guidance group. All groups showed improvement, except for the modeling group. The passive guidance group made more errors in posttests than the congruent and incongruent groups. Only the congruent group increased the amount of time around 30° after practice. Active experience of the sensory consequences combined with practice sending appropriate motor commands is the most effective method for learning, even though strategic improvements can be attained without experience of the latter.  相似文献   

14.
In a repetitive tapping task, the within-hand variability of intertap intervals is reduced when participants tap with both hands, as opposed to single-handed tapping. This bimanual advantage can be attributed to timer variance (according to the Wing-Kristofferson model). Separate timers have been proposed for each hand whose outputs are then averaged (Helmuth & Ivry, 1996, Journal of Experimental Psychology: Human Perception and Performance, 22, 278-293). Alternatively, timing might be based on sensory reafference and the bimanual advantage due to the enhancement of sensory reafferences. This alternative hypothesis was tested in three experiments. In the first experiment, we replicated the bimanual advantage in tapping with two fingers of the same hand compared with single finger tapping. In the second experiment, we demonstrated that the bimanual advantage decreased when tactile reafferences from left-hand taps were omitted (by contact-free tapping). In the third experiment, participants tapped bimanually with the index fingers of both hands firmly mechanically coupled. The bimanual advantage was replicated for this condition. Results are consistent with the assumption that the bimanual advantage is due to the sensory reafferences of the second hand. We suggest that our results are best explained by a reformulation of the Wing-Kristofferson model, in which the timer provides action goals in terms of sensory reafferences.  相似文献   

15.
《Cognitive development》2006,21(2):81-92
Two experiments investigated 5-month-old infants’ amodal sensitivity to numerical correspondences between sets of objects presented in the tactile and visual modes. A classical cross-modal transfer task from touch to vision was adopted. Infants were first tactually familiarized with two or three different objects presented one by one in their right hand. Then, they were presented with visual displays containing two or three objects. Visual displays were presented successively (Experiment 1) or simultaneously (Experiment 2). In both experiments, results showed that infants looked longer at the visual display which contained a different number of objects from the tactile familiarization phase. Taken together, the results revealed that infants can detect numerical correspondences between a sequence of tactile and visual stimulation, and they strengthen the hypothesis of amodal and abstract representation of small numbers of objects (two or three) across sensory modalities in 5-month-old infants.  相似文献   

16.
Tasks that require tracking visual information reveal the severe limitations of our capacity to attend to multiple objects that vary in time and space. Although these limitations have been extensively characterized in the visual domain, very little is known about tracking information in other sensory domains. Does tracking auditory information exhibit characteristics similar to those of tracking visual information, and to what extent do these two tracking tasks draw on the same attention resources? We addressed these questions by asking participants to perform either single or dual tracking tasks from the same (visual–visual) or different (visual–auditory) perceptual modalities, with the difficulty of the tracking tasks being manipulated across trials. The results revealed that performing two concurrent tracking tasks, whether they were in the same or different modalities, affected tracking performance as compared to performing each task alone (concurrence costs). Moreover, increasing task difficulty also led to increased costs in both the single-task and dual-task conditions (load-dependent costs). The comparison of concurrence costs between visual–visual and visual–auditory dual-task performance revealed slightly greater interference when two visual tracking tasks were paired. Interestingly, however, increasing task difficulty led to equivalent costs for visual–visual and visual–auditory pairings. We concluded that visual and auditory tracking draw largely, though not exclusively, on common central attentional resources.  相似文献   

17.
The bimanual coupling literature supposes an inherent drive for synchrony between the upper limbs when making discrete bimanual movements. The level of synchrony is argued to be task dependent, reliant on the visual demands of the two targets, and the result of a complex pattern of hand and eye movements (Bingham, Hughes, & Mon-Williams, 2008 ; Riek, Tresilian, Mon-Williams, Coppard, & Carson, 2003 ). However, recent work by Bruyn and Mason ( 2009 ) suggests that temporal coordination is not solely influenced by visual saccades. In this experimental series, a total of 8 participants performed congruent movements to targets either near or far from the midline. Targets far from the midline, requiring a visual saccade, resulted in greater terminal asynchrony. Initial and terminal asynchrony were not consistent, but linked to the task demands at that stage of the movement. If the asynchrony evident at the end of a bimanual movement is due to a complex pattern of hand and eye movements then the removal of visual feedback should result in an increase in synchrony. Sixteen participants then completed congruent and incongruent bimanual aiming movements to near and/or far targets. Movements were made with or without visual feedback of hands and targets. Analyses revealed that movements made without visual feedback showed increased synchrony between the limbs, yet movements to incongruent targets still showed greater asynchrony. We suggest that visual constraints are not the sole cause of asynchrony in discrete bimanual movements.  相似文献   

18.
The present study addressed the development of bimanual interference in children performing a dual motor task, in which each hand executes a different task simultaneously. Forty right-handed children (aged 4, 5-6, 7-8 and 9-11years, ten in each age group) were asked to perform a bimanual task in which they had to tap with a pen using the non-preferred hand and simultaneously trace a circle or a square with a pen using the preferred hand as quickly as possible. Tapping and tracing were also performed unimanually. Differences between unimanual and bimanual performance were assessed for number of taps, length of tap trace and mean tracing velocity. It was assumed that with increasing age, better bimanual coordination would result in better performance on the dual task showing less intermanual interference. The results showed that tapping and tracing performance increased with age, unimanually as well as bimanually, consistent with developmental advancement. However, the percentage of intermanual interference due to bimanual performance was not significantly different in the four age groups. Although performing the dual task resulted in mutual intermanual interference, all groups showed a significant effect of tracing shape. More specifically, all age groups showed a larger percentage decrease in tracing velocity when performing the circle compared to the square in the dual task. The present study reveals that children as young as four years are able to coordinate both hands when tapping and tracing bimanually.  相似文献   

19.
The role of intrinsic and extrinsic information feedback in learning a new bimanual coordination pattern was investigated. The pattern required continuous flexion-extension movements of the upper limbs with a 90 ° phase offset. Separate groups practiced the task under one of the following visual feedback conditions: (a) blindfolded (reduced FB group), (b) with normal vision (normal FB group), or (c) with concurrent relative motion information (enhanced FB group). All groups were subjected to three different transfer test conditions at regular intervals during practice. These tests included reduced, normal vision, and enhanced vision conditions. Experiment 1 showed that the group receiving augmented information feedback about its relative motions in real-time produced the required coordination pattern more successfully than the remaining two groups, irrespective of the transfer conditions under which performance was evaluated. Experiment 2 replicated and extended the superiority of the enhanced feedback group during acquisition and retention. Experiment 3 demonstrated that successful transfer to various transfer test conditions was not a result of test-trial effects. Overall, the data suggest that the conditions that optimized performance of the coordination pattern during acquisition also optimized transfer performance.  相似文献   

20.
For nearly four decades bimanual coordination, “a prototype of complex motor skills” and apparent “window into the design of the brain,” has been intensively studied. Past research has focused on describing and modeling the constraints that allow the production of some coordination patterns while limiting effective performance of other bimanual coordination patterns. More recently researchers have identified a coalition of perception-action constraints that hinder the effective production of bimanual skills. The result has been that given specially designed contexts where one or more of these constraints are minimized, bimanual skills once thought difficult, if not impossible, to effectively produce without very extensive practice can be executed effectively with little or no practice. The challenge is to understand how these contextual constraints interact to allow or inhibit the production of complex bimanual coordination skills. In addition, the factors affecting the stability of bimanual coordination tasks needs to be re-conceptualized in terms of perception-related constraints arising from the environmental context in which performance is conducted and action constraints resident in the neuromotor system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号