首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two experiments are reported in which inhibition of return (IOR)was examined wit h single-responsetasks (either manual responses alone or saccadic responses alone) and dual-response tasks (simultaneous manual and saccadic responses). The first experiment-using guided limb movements that require considerable spatial information-showed more IOR for saccades than for pointing responses. In addition, saccadic IOR was reduced with concurrent pointing movements, but manual IOR was not affected by concurrent saccades. Importantly, at the time of saccade initiation, the arm movements did not start yet, indicating that the influence on saccade IOR is due to arm-movement preparation. In the second experiment, using localization keypress responses that required only minimal spatial information, greater IOR was again found for saccadic than for manual responses, but no effect of concurrent movements was found. These findings add further support that there is a dissociation between oculomotor and skeletal-motor IOR. Moreover, the results show that the preparation manual responses tend to mediate saccadic behavior-but only when the manual responses require high levels of spatial accuracy-and that the superior colliculus is the likely neural substrate integrating IOR for eye and arm movements.  相似文献   

2.
In 2 experiments (N = 10, Experiment 1; N = 16, Experiment 2), the authors investigated whether evidence for response facilitation and subsequent inhibition elicited by masked prime stimuli can be observed for output modalities other than manual responding. Masked primes were followed by target stimuli that required a 2-choice manual, saccadic, or vocal response. Performance was measured for compatible trials in which primes and targets were identical and for incompatible trials in which they were mapped to opposite responses. When primes were presented centrally, performance benefits were obtained for incompatible trials; whereas for peripherally presented primes, performance benefits were found in compatible trials. That pattern of results was obtained for manual responses and for saccadic eye movements (Experiment 1), demonstrating that those effects are not mediated by specialized dorsal pathways involved in visuomanual control. An analogous pattern of effects was found when manual and vocal responses were compared (Experiment 2). Because vocal responding is controlled by the inferotemporal cortex, that result shows that prime-target compatibility effects are not primarily mediated by the dorsal stream, but appear to reflect modality-unspecific visuomotor links that allow rapid activation of motor responses that may later be subject to inhibition.  相似文献   

3.
The present study examines whether endogenous saccades are preceded by shifts of attention. Three experiments are reported in which participants were required to execute a saccadic eye movement to a certain location and to subsequently identify the orientation of a target triangle. Prior to the execution of the saccade a prime was presented, which was compatible or incompatible with the target. A priming effect (faster responses in the compatible condition than in the incompatible condition) occurred only when the prime was presented at the saccade destination, and this effect was larger when the prime was presented during oculomotor programming than when it was presented prior to oculomotor programming. The results indicate that an endogenous shift of attention precedes endogenous saccades, providing further support for theories of visual selection that assume a tight coupling between attention and saccades.  相似文献   

4.
In 2 experiments (N = 10, Experiment 1; N = 16, Experiment 2), the authors investigated whether evidence for response facilitation and subsequent inhibition elicited by masked prime stimuli can be observed for output modalities other than manual responding. Masked primes were followed by target stimuli that required a 2-choice manual, saccadic, or vocal response. Performance was measured for compatible trials in which primes and targets were identical and for incompatible trials in which they were mapped to opposite responses. When primes were presented centrally, performance benefits were obtained for incompatible trials; whereas for peripherally presented primes, performance benefits were found in compatible trials. That pattern of results was obtained for manual responses and for saccadic eye movements (Experiment 1), demonstrating that those effects are not mediated by specialized dorsal pathways involved in visuomanual control. An analogous pattern of effects was found when manual and vocal responses were compared (Experiment 2). Because vocal responding is controlled by the inferotemporal cortex, that result shows that prime-target compatibility effects are not primarily mediated by the dorsal stream, but appear to reflect modality-unspecific visuomotor links that allow rapid activation of motor responses that may later be subject to inhibition.  相似文献   

5.
Preparation provided by visual location cues is known to speed up behavior. However, the role of concurrent saccades in response to visual cues remains unclear. In this study, participants performed a spatial precueing task by pressing one of four response keys with one of four fingers (two of each hand) while eye movements were monitored. Prior to the stimulus, we presented a neutral cue (baseline), a hand cue (corresponding to left vs. right positions), or a finger cue (corresponding to inner vs. outer positions). Participants either remained fixated on a central fixation point or moved their eyes freely. The results demonstrated that saccades during the cueing interval altered the pattern of cueing effects. Finger cueing trials in which saccades were spatially incompatible (vs. compatible) with the subsequently required manual response exhibited slower manual RTs. We propose that interference between saccades and manual responses affects manual motor preparation.  相似文献   

6.
To examine whether the motor inhibition of return (IOR) postulated by Taylor and Klein (1998, 2000) generalizes to manual guided movements or is restricted to saccadic responses, the following three experiments were conducted. The first experiment combined peripheral cues (which generate IOR) with four types of manual responses made to central targets (central arrow indicating the response location). The responses were made on a touch-screen and were the equivalent of either a detection keypress, a choice keypress, a detection-guided pointing movement, or a choice-guided pointing movement. No IOR was found for any of the responses. The second experiment replicated the main result under eye fixation control. In Experiment 3, peripheral cues and peripheral targets were used, and IOR was present in all responses. Overall, these finding suggest that motor-based IOR is restricted to the oculomotor system. Implications for motor-based IOR and attention-based IOR are discussed.  相似文献   

7.
This paper examines how the covert orienting of spatial attention affects motor responses to visual stimuli. Premotor theories, as well as hemi-field inhibition accounts of visual attention predict an increase in response times when a target stimulus appears in the opposite direction to a spatial cue. Some models also suggest that this meridional effect should be increased across oblique meridians. Two types of cue (central and peripheral) were used to orient attention towards locations prior to the onset of visual targets. Simple manual (press button) and saccadic responses were measured. No meridional effects were found with peripheral cues, whereas central cueing produced meridional effects across all meridians. Cueing effects did not vary significantly with two-dimensional axis for either manual or saccadic responses. Increases in response time with cue-target distance were found for both response and cue types. For saccades, distance gradients were shallower moving distally rather than proximally from the cued position. However, simple manual responses did not show this asymmetry. Orienting to central cues also modulated the amplitude of saccades. The results are consistent with an effect of attentional cues in oculomotor centres as well as the existence of actiondependent attentional representations. However, it is proposed that, rather than reflecting oculomotor programming, meridional effects arise from a directional organization within spatio-cognitive representations.  相似文献   

8.
Responses tend to be slower to previously fixated spatial locations, an effect known as “inhibition of return” (IOR). Saccades cannot be assumed to be independent, however, and saccade sequences programmed in parallel differ from independent eye movements. We measured the speed of both saccadic and manual responses to probes appearing in previously fixated locations when those locations were fixated as part of either parallel or independent saccade sequences. Saccadic IOR was observed in independent but not parallel saccade sequences, while manual IOR was present in both parallel and independent sequence types. Saccadic IOR was also short-lived, and dissipated with delays of more than ~1500?ms between the intermediate fixation and the probe onset. The results confirm that the characteristics of IOR depend critically on the response modality used for measuring it, with saccadic and manual responses giving rise to motor and attentional forms of IOR, respectively. Saccadic IOR is relatively short-lived and is not observed at intermediate locations of parallel saccade sequences, while attentional IOR is long-lasting and consistent for all sequence types.  相似文献   

9.
We tested whether color singletons lead to saccadic and manual inhibition of return (IOR; i.e., slower responses at cued locations) and whether IOR depended on the relevance of the color singletons. The target display was preceded by a nonpredictive cue display. In three experiments, half of the cues were response-relevant, because participants had to perform a discrimination task at the cued location. With the exception of Experiment 2, none of the cue colors matched the target color. We observed saccadic IOR after color singletons, which was greater for slow than for fast responses. Furthermore, when the relevant cue color matched the target color, we observed attentional capture (i.e., faster responses at cued locations) with rapid responses, but IOR with slower responses, which provides evidence for attentional deallocation. When the cue display was completely response-irrelevant in two additional experiments, we did not find evidence for IOR. Instead, we found attentional capture when the cue color matched the target color. Also, attentional capture was greater for rapid responses and with short cue–target intervals. Thus, IOR emerges when cues are relevant and do not match the target color, whereas attentional capture emerges with relevant and irrelevant cues that match the target color.  相似文献   

10.
The costs produced by invalid precues can depend on the spatial relationship between the cued location and the target location. If oculomotor programs mediate attention shifts, then the effect of varying the spatial relation between the cue and target should be the same for covert orienting (indexed by manual responses) and saccadic responses. We found this to be true only for central precues. With central precues, both manual and saccadic costs were greater when cue and target occurred on opposite sides of the vertical meridian than when they occurred on the same side. With peripheral precues, there were no meridian effects in either response condition, but there was a significant dissociation in the pattern of saccadic and manual costs. For manual responses costs were greater when the target was eccentric relative to the cue, whereas for saccades costs were greater when the cue was eccentric to the target. These results provide additional support for the idea that different orienting mechanisms are engaged by central and peripheral precues. They further suggest that the relationship between oculomotor and attentional orienting may depend on the nature of the precue, with the potential for interdependence being greater with central precues.  相似文献   

11.
The costs produced by invalid precues can depend on the spatial relationship between the cued location and the target location. If oculomotor programs mediate attention shifts, then the effect of varying the spatial relation between the cue and target should be the same for covert orienting (indexed by manual responses) and saccadic responses. We found this to be true only for central precues. With central precues, both manual and saccadic costs were greater when cue and target occurred on opposite sides of the vertical meridian than when they occurred on the same side. With peripheral precues, there were no meridian effects in either response condition, but there was a significant dissociation in the pattern of saccadic and manual costs. For manual responses costs were greater when the target was eccentric relative to the cue, whereas for saccades costs were greater when the cue was eccentric to the target. These results provide additional support for the idea that different orienting mechanisms are engaged by central and peripheral precues. They further suggest that the relationship between oculomotor and attentional orienting may depend on the nature of the precue, with the potential for interdependence being greater with central precues.  相似文献   

12.
In the present study, we explored the role of faces in oculomotor inhibition of return (IOR) using a tightly controlled spatial cuing paradigm. We measured saccadic response latency to targets following peripheral cues that were either faces or objects of lesser sociobiological salience. A recurring influence from cue content was observed across numerous methodological variations. Faces versus other object cues briefly reduced saccade latencies toward subsequently presented targets, independently of attentional allocation and IOR. The results suggest a short-lived priming effect or social facilitation effect from the mere presence of a face. In the present study, we further showed that saccadic responses were unaffected by face versus nonface objects in double-cue presentations. Our findings indicate that peripheral face cues do not influence attentional orienting processes involved in IOR any differently from other objects in a tightly controlled oculomotor IOR paradigm.  相似文献   

13.
ABSTRACT

Intermixing central, directional arrow targets with the peripheral targets typically used in the Posnerian spatial cueing paradigm offers a useful diagnostic for ascertaining the relative contributions of output and input processes to oculomotor inhibition of return (IOR). Here, we use this diagnostic to determine whether object-based oculomotor IOR comprises output and/or input processes. One of two placeholder objects in peripheral vision was cued, then both objects rotated smoothly either 90 or 180 degrees around the circumference of an imaginary circle. After this movement, a saccade was made to the location marked by a peripheral onset target or indicated by the central arrow. In our first three experiments, whereas there was evidence for IOR when measured by central arrow or peripheral onset targets at cued locations, there was little trace of IOR at the cued object. We thereafter precisely replicated the seminal experiment for object-based oculomotor IOR (Abrams, R. A., & Dobkin, R. S. (1994). Inhibition of return: Effects of attentional cuing on eye movement latencies. Journal of Experimental Psychology: Human Perception and Performance, 20(3), 467–477; Experiment 4) but again found little evidence of an object-based IOR effect. Finally, we ran a paradigm with only peripheral targets and with motion and stationary trials randomly intermixed. Here we again showed IOR at the cued location but not at the cued object. Together, the findings suggest that object-based representation of oculomotor IOR is much more tenuous than implied by the literature.  相似文献   

14.
Oculomotor inhibition of return (IOR) is believed to facilitate scene scanning by decreasing the probability that gaze will return to a previously fixated location. This "foraging" hypothesis was tested during scene search and in response to sudden-onset probes at the immediately previous (one-back) fixation location. The latencies of saccades landing within 1o of the previous fixation location were elevated, consistent with oculomotor IOR. However, there was no decrease in the likelihood that the previous location would be fixated relative to distance-matched controls or an a priori baseline. Saccades exhibit an overall forward bias, but this is due to a general bias to move in the same direction and for the same distance as the last saccade (saccadic momentum) rather than to a spatially specific tendency to avoid previously fixated locations. We find no evidence that oculomotor IOR has a significant impact on return probability during scene search.  相似文献   

15.
According to theories of emotion and attention, we are predisposed to orient rapidly toward threat. However, previous examination of attentional cueing by threat showed no enhanced capture at brief durations, a finding that may be related to the sensitivity of the manual response measure used. Here we investigated the time course of orienting attention toward fearful faces in the exogenous cueing task. Cue duration (20 ms or 100 ms) and response mode (saccadic or manual) were manipulated. In the saccade mode, both enhanced attentional capture and impaired disengagement from fearful faces were evident and limited to 20 ms, suggesting that saccadic cueing effects emerge rapidly and are short lived. In the manual mode, fearful faces impacted only upon the disengagement component of attention at 100 ms, suggesting that manual cueing effects emerge over longer periods of time. Importantly, saccades could reveal threat biases at brief cue durations consistent with current theories of emotion and attention.  相似文献   

16.
We examined eye-movement latencies to a target that appeared during visual fixation of a stationary stimulus, a moving stimulus, or an extrafoveal stimulus. The stimulus at fixation was turned off either before target onset (gap condition) or after target onset (overlap condition). Consistent with previous research, saccadic latencies were shorter in gap conditions than they were in overlap conditions (the gap effect). In Experiment 1, a gap effect was observed for vergence eye movements. In Experiment 2, a gap effect was observed for saccades directed at a target that appeared during visual pursuit of a moving stimulus. In Experiment 3, a gap effect was observed for saccades directed at a target that appeared during extrafoveal fixation. The present results extend reports of the gap effect for saccadic shifts during visual fixation to (a) vergence shifts during visual fixation, (b) saccadic shifts during smooth visual pursuit, and (c) saccadic shifts during extrafoveal fixation. The present findings are discussed with respect to the incompatible goals of fixation-locking and fixation-shifting oculomotor responses.  相似文献   

17.
Inhibition of return in manual and saccadic response systems   总被引:6,自引:0,他引:6  
When nonpredictive exogenous visual cues are used to reflexively orient covert visual spatial attention, the initial early facilitation for detecting stimuli at cued versus uncued spatial locations develops into inhibition by 300 msec following the cue, a pattern referred to as inhibition of return (IOR). Experiments were carried out comparing the magnitude and time course for development of IOR effects when manual versus saccadic responses were required. The results showed that both manual and saccadic responses result in equivalent amounts of facilitation following initial exposure to a spatial cue. However, IOR developed more quickly for saccadic responses, such that, at certain cue-target SOAs, saccadic responses to targets were inhibited, whereas manual responses were still facilitated. The findings are interpreted in terms of a premotor theory of visual attention.  相似文献   

18.
Previous research has shown that when subjects search for a particular target object the sudden appearance of a new object captures the eyes on a large proportion of trials. The present study examined whether the onset affects the oculomotor system even when the eyes move directly towards the target. Using a modified version of the oculomotor paradigm (see Theeuwes, Kramer, Hahn, & Irwin, 1998) we show that when the eyes moved to the target object, subsequent saccades were inhibited from moving to a location at which a new object had previously appeared (inhibition-of-return; IOR). Whether or not a saccade to the onset was executed had no effect on the size of the inhibition. In particular conditions, the trajectories of saccades to the target objects were slightly curved in the opposite direction of the onset. The data are interpreted in the context of a novel hypothesis regarding oculomotor IOR.  相似文献   

19.
When two spatially proximal stimuli are presented simultaneously, a first saccade is often directed to an intermediate location between the stimuli (averaging saccade). In an earlier study, Watanabe (2001) showed that, at a long cue–target onset asynchrony (CTOA; 600 ms), uninformative cues not only slowed saccadic response times (SRTs) to targets presented at the cued location in single target trials (inhibition of return, IOR), but also biased averaging saccades away from the cue in double target trials. The present study replicated Watanabe's experimental task with a short CTOA (50 ms), as well as with mixed short (50 ms) and long (600 ms) CTOAs. In all conditions on double target trials, uninformative cues robustly biased averaging saccades away from cued locations. Although SRTs on single target trials were delayed at previously cued locations at both CTOAs when they were mixed, this delay was not observed in the blocked, short CTOA condition. We suggest that top-down factors, such as expectation and attentional control settings, may have asymmetric effects on the temporal and spatial dynamics of oculomotor processing.  相似文献   

20.
Inhibition of return (IOR) is an orienting phenomenon characterized by slower responses to spatially cued than to uncued targets. In Experiment 1, a physically small digit that required identification was presented immediately following a peripheral cue. The digit could appear in the cued peripheral box or in the central box, thus guaranteeing a saccadic response to the cue in one condition and maintenance of fixation in the other. An IOR effect was observed when a saccadic response to the cue was required, but IOR was not generated by the peripheral cue when fixation was maintained in order to process the central digit. In Experiment 2, IOR effects were observed when participants were instructed to ignore the digits, whether those digits were presented in the periphery or at fixation. These findings suggest that behaviorally manifested, cue-induced IOR effects can be eliminated by focal spatial attentional control settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号