首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we investigated whether visual background information available during target presentation influences manual pointing to remembered targets. Younger and older participants manually pointed with their unseen hands to remembered or visible targets that were presented or not over a structured visible background. The results indicated that a structured visual background biased movement planning processes, but did not influence motor control processes, regardless of the fact that target location and the background were visible or remembered. How one uses visual background information for movement planning is not modified by aging.  相似文献   

2.
Visually perceived eye level (VPEL) and the ability of subjects to reach with an unseen limb to targets placed at VPEL were measured in a statically pitched visual surround (pitchroom). VPEL was shifted upward and downward by upward and downward room pitch, respectively. Accuracy in reaching to VPEL represented a compromise between VPEL and actual eye level. This indicates that VPEL shifts reflect in part a change in perceived location of objects. When subjects were provided with terminal visual feedback about their reaching, accuracy improved rapidly. Subsequent reaching, with the room vertical, revealed a negative aftereffect (i.e., reaching errors that were opposite those made initially in the pitched room). In a second study, pointing accuracy was assessed for targets located both at VPEL and at other positions. Errors were similar for targets whether located at VPEL or elsewhere. Additionally, pointing responses were restricted to a narrower range than that of the actual target locations. The small size of reaching and pointing errors in both studies suggests that factors other than a change in perceived location are also involved in VPEL shifts.  相似文献   

3.
The reported experiment tested the effect of abrupt and unpredictable viewpoint changes on the attentional tracking of multiple objects in dynamic 3-D scenes. Observers tracked targets that moved independently among identically looking distractors on a rectangular floor plane. The tracking interval was 11 s. Abrupt rotational viewpoint changes of 10°, 20°, or 30° occurred after 8 s. Accuracy of tracking targets across a 10° viewpoint change was comparable to accuracy in a continuous control condition, whereas viewpoint changes of 20° and 30° impaired tracking performance considerably. This result suggests that tracking is mainly dependant on a low-level process whose performance is saved against small disturbances by the visual system's ability to compensate for small changes of retinocentric coordinates. Tracking across large viewpoint changes succeeds only if allocentric coordinates are remembered to relocate targets after displacements.  相似文献   

4.
Humans can reach for objects with their hands whether the objects are seen, heard or touched. Thus, the position of objects is recoded in a joint-centered frame of reference regardless of the sensory modality involved. Our study indicates that this frame of reference is not the only one shared across sensory modalities. The location of reaching targets is also encoded in eye-centered coordinates, whether the targets are visual, auditory, proprioceptive or imaginary. Furthermore, the remembered eye-centered location is updated after each eye and head movement. This is quite surprising since, in principle, a reaching motor command can be computed from any non-visual modality without ever recovering the eye-centered location of the stimulus. This finding may reflect the predominant role of vision in human spatial perception.  相似文献   

5.
Five experiments are reported in which subjects were asked to remember short, visually presented sequences of whole body movement patterns, words, and spatial positions. The items were recalled in order in a memory span paradigm. During presentation of the items to be remembered subjects simply watched, or they carried out a concurrent activity involving articulatory suppression, movement to external spatial targets, or body-related movement. When the movement patterns to be remembered were familiar to subjects, movement span was not disrupted by articulatory suppression or movement to spatial targets but was disrupted by body-related movement. This movement suppression task, however, did not interfere with performance on a spatial span task or on verbal span. It is concluded that the memory for patterns of limb movement differs from memory for movement to spatial targets and that accounts of visuo-spatial processes in working memory involve the latter type of movement.  相似文献   

6.
Testing the hypothesis that spatial localization can be based on an abstracted spatial location code, rather than on stored proprioceptive information, orientation of an unseen limb was contrasted under intra- and interlimb-movement conditions. In Experiment 1, movements were executed in the midline either vertically upward or horizontally forward in the sagittal plane. These results revealed that intralimb errors were smaller than interlimb errors only at the most distant criterion spatial targets, and it was hypothesized that positioning of a limb could be mediated by a spatial location code if spatial targets were coded in association with body reference points. Experiment 2 tested the egocentric referent hypothesis further by manipulating the availability of body-based spatial reference points under intra- and interlimb conditions. At spatial targets that could be coded in conjunction with body reference points, no difference was found between intra- and interlimb accuracy. In contrast, at spatial targets where body reference points were absent, or at least made difficult to rely on, accuracy was greater in the intralimb condition. It was concluded that spatial reference points, in this instance body-based, are necessary if the spatial positioning of a limb is to be based on the spatial location code. The data were also discussed within a more comprehensive framework of spatial frames of reference.  相似文献   

7.
The effect of height in the picture plane on the remembered location of ascending or descending targets was examined. Consistent with previous research, memory was displaced forward in the direction of motion. The magnitude of forward displacement was larger for targets low in the picture plane than for targets high in the picture plane, and this was observed with ascending motion and with descending motion. This pattern is consistent with the hypothesis that memory for the location of ascending or descending targets is biased by the effects of implied gravitational attraction on the velocity of those targets, and some implications of such a bias for issues in mental representation are noted.  相似文献   

8.
Visuomotor memory for target location in near and far reaching spaces   总被引:1,自引:0,他引:1  
The authors investigated systematic error associated with endpoints of memory-guided actions performed in near and far reaching spaces. To accomplish that objective, the authors instructed 12 participants to initiate open-loop and memory-guided reaches (0, 2,000, and 5,000 ms of visual delay) from a common start position to remembered midline targets in near (i.e., a backward reach) and far (i.e., a forward reach) reaching spaces. The results indicated that near and far reaches, respectively, over- and undershot veridical target location, and the direction-specific nature of the error was amplified in the memory-guided conditions. The latter finding represents an important aspect of the present research because it suggests that the direction-specific error identified here is related to factors arising within the sensory component of the task rather than mechanical differences in reaching direction. The authors propose that stored target information serving memory guided actions is susceptible to a compression of visual space in memory such that the egocentric distance of a remembered target is underestimated.  相似文献   

9.
Working memory is a system that keeps limited information on-line for immediate access by cognitive processes. This type of active maintenance is important for everyday life activities. The present study shows that maintaining a location in spatial working memory affects the trajectories of saccadic eye movements toward visual targets, as the eyes deviate away from the remembered location. This finding provides direct evidence for a strong overlap between spatial working memory and the eye movement system. We argue that curvature is the result of the need to inhibit memory-based eye movement activity in the superior colliculus, in order to allow an accurate saccade to the visual target. Whereas previous research has shown that the eyes may deviate away from visually presented stimuli that need to be ignored, we show that the eyes also curve away from remembered stimuli.  相似文献   

10.
Information that is spaced over time is better remembered than the same amount of information massed together. This phenomenon, known as the spacing effect, was explored with respect to its effect on learning and neurogenesis in the adult dentate gyrus of the hippocampal formation. Because the cells are generated over time and because learning enhances their survival, we hypothesized that training with spaced trials would rescue more new neurons from death than the same number of massed trials. In the first experiment, animals trained with spaced trials in the Morris water maze outperformed animals trained with massed trials, but there was not a direct effect of trial spacing on cell survival. Rather, animals that learned well retained more cells than animals that did not learn or learned poorly. Moreover, performance during acquisition correlated with the number of cells remaining in the dentate gyrus after training. In the second experiment, the time between blocks of trials was increased. Consequently, animals trained with spaced trials performed as well as those trained with massed, but remembered the location better two weeks later. The strength of that memory correlated with the number of new cells remaining in the hippocampus. Together, these data indicate that learning, and not mere exposure to training, enhances the survival of cells that are generated 1 wk before training. They also indicate that learning over an extended period of time induces a more persistent memory, which then relates to the number of cells that reside in the hippocampus.  相似文献   

11.
Models of visual working memory (VWM) have benefitted greatly from the use of the delayed-matching paradigm. However, in this task, the ability to recall a probed feature is confounded with the ability to maintain the proper binding between the feature that is to be reported and the feature (typically location) that is used to cue a particular item for report. Given that location is typically used as a cue-feature, we used the delayed-estimation paradigm to compare memory for location to memory for color, rotating which feature was used as a cue and which was reported. Our results revealed several novel findings: 1) the likelihood of reporting a probed object’s feature was superior when reporting location with a color cue than when reporting color with a location cue; 2) location report errors were composed entirely of swap errors, with little to no random location reports; and 3) both colour and location reports greatly benefitted from the presence of nonprobed items at test. This last finding suggests that it is uncertainty over the bindings between locations and colors at memory retrieval that drive swap errors, not at encoding. We interpret our findings as consistent with a representational architecture that nests remembered object features within remembered locations.  相似文献   

12.
Posterior parietal cortex lesions have been associated with both hemispatial neglect and spatialupdating deficits. Currently, the relation between these processes remains poorly understood. We tested the ability of parietal patients with neglect to update remembered target locations during passive whole-body rotations. The rotations and manual pointing responses were executed with and without vision. During the rotation, the remembered location stayed on the same side of the body midline or crossed the midline. Parietal patients generally underestimated rotations, as compared with control groups, but updated targets equally well on either side of the body midline, regardless of the amount of updating required. Once parietal patients have localized a target, they can use self-motion information to update its location, even if it passes into the region they typically neglect. This lack of contralesional updating effects contrasts with impairments in eye position updating found in previous work with parietal patients.  相似文献   

13.
When they are trained in a Morris water maze to find a hidden platform, whose location is defined by a number of equally spaced visual landmarks round the circumference of the pool, rats are equally able to find the platform when tested with any two of the landmarks (Prados, & Trobalon, 1998; Rodrigo, Chamizo, McLaren, & Mackintosh, 1997). This suggests that none of the landmarks was completely overshadowed by any of the others. In Experiment 1 one pair of groups was trained with four equally salient visual landmarks spaced at equal intervals around the edge of the pool, while a second pair was trained with two landmarks only, either relatively close to or far from the hidden platform. After extensive training, both male and female rats showed a reciprocal overshadowing effect: on a test with two landmarks only (either close to or far from the platform), rats trained with four landmarks spent less time in the platform quadrant than those trained with only two. Experiment 2 showed that animals trained with two landmarks and then tested with four also performed worse on test than those trained and tested with two landmarks only. This suggests that generalization decrement, rather than associative competition, provides a sufficient explanation for the overshadowing observed in Experiment 1. Experiment 3 provided a within-experiment replication of the results of Experiments 1 and 2. Finally, Experiment 4 showed that rats trained with a configuration of two landmarks learn their identity.  相似文献   

14.
The present study examined the flexibility with which people can adopt different category schemes in the spatial domain. In a location memory task, participants viewed and estimated the locations of four kinds of objects that were spatially grouped by object identity. This identity-based arrangement was either congruent or incongruent with the perceptually based, geometric categories that have been reported in previous research. Four experiments examined the conditions under which these different category schemes are used to inform estimates of locations. The results showed that use of identity information depended on the number of objects to be remembered during a trial: When one or two objects were remembered at a time, only geometric categories affected estimates, but when four objects were to be remembered, both geometric categories and identity groupings affected estimates. As memory load increases, participants rely on additional sources to inform their estimates of location.  相似文献   

15.
Recent research [e.g., Carrozzo, M., Stratta, F., McIntyre, J., & Lacquaniti, F. (2002). Cognitive allocentric representations of visual space shape pointing errors. Experimental Brain Research 147, 426-436; Lemay, M., Bertrand, C. P., & Stelmach, G. E. (2004). Pointing to an allocentric and egocentric remembered target. Motor Control, 8, 16-32] reported that egocentric and allocentric visual frames of reference can be integrated to facilitate the accuracy of goal-directed reaching movements. In the present investigation, we sought to specifically examine whether or not a visual background can facilitate the online, feedback-based control of visually-guided (VG), open-loop (OL), and memory-guided (i.e. 0 and 1000 ms of delay: D0 and D1000) reaches. Two background conditions were examined in this investigation. In the first background condition, four illuminated LEDs positioned in a square surrounding the target location provided a context for allocentric comparisons (visual background: VB). In the second condition, the target object was singularly presented against an empty visual field (no visual background: NVB). Participants (N=14) completed reaching movements to three midline targets in each background (VB, NVB) and visual condition (VG, OL, D0, D1000) for a total of 240 trials. VB reaches were more accurate and less variable than NVB reaches in each visual condition. Moreover, VB reaches elicited longer movement times and spent a greater proportion of the reaching trajectory in the deceleration phase of the movement. Supporting the benefit of a VB for online control, the proportion of endpoint variability explained by the spatial location of the limb at peak deceleration was less for VB as opposed to NVB reaches. These findings suggest that participants are able to make allocentric comparisons between a VB and target (visible or remembered) in addition to egocentric limb and VB comparisons to facilitate online reaching control.  相似文献   

16.
Previous research demonstrates that implicitly learned probability information can guide visual attention. We examined whether the probability of an object changing can be implicitly learned and then used to improve change detection performance. In a series of six experiments, participants completed 120–130 training change detection trials. In four of the experiments the object that changed color was the same shape (trained shape) on every trial. Participants were not explicitly aware of this change probability manipulation and change detection performance was not improved for the trained shape versus untrained shapes. In two of the experiments, the object that changed color was always in the same general location (trained location). Although participants were not explicitly aware of the change probability, implicit knowledge of it did improve change detection performance in the trained location. These results indicate that improved change detection performance through implicitly learned change probability occurs for location but not shape.  相似文献   

17.
Past research has identified visual objects as the units of information processing in visual short-term memory (VSTM) and has shown that two features from the same object can be remembered in VSTM as well (or almost as well) as one feature of that object and are much better remembered than the same two features from two spatially separated objects. It is not clear, however, what drives this object benefit in VSTM. Is it the shared spatial location (proximity), the connectedness among features of an object, or both? In six change detection experiments, both location/proximity and connectedness were found to be crucial in determining the magnitude of the object benefit in VSTM. Together, these results indicate that location/proximity and connectedness are essential elements in defining a coherent visual object representation in VSTM.  相似文献   

18.
The effect of intertrial interval, preset interval, and retention interval on the performance of rats in a time estimation task was described. On each trial a signal was presented for a duration of 2 to 8 sec. Eighteen rats were trained to press one lever (the short response) if the signal was shorter than 4 sec, and another lever (the long response) if the signal was longer than 4 sec. When trials were massed (Experiment 1), the percentage long response was affected by the classification of the previous signal, but not by its actual duration. This suggests that the animals remembered the response made on the previous trial, but not the signal duration. If a response was not permitted on the previous trial (Experiment 2), the duration or classification of the previous signal had no effect on performance. This supports the conclusion from the first experiment and suggests that an animal can reset its internal clock in less than 2 sec. In Experiment 3, the difference limen of the psychophysical function increased with the duration of the retention interval, but the point of subjective equality did not change. This suggests that resetting of the internal clock occurs on a non-time dimension.  相似文献   

19.
The effect of a large stationary landmark on memory for the location of a stationary target was examined. Memory for a stationary target was displaced toward the landmark, and targets that were larger, further from, or above the landmark exhibited greater magnitudes of displacement. Displacement was generally larger when the landmark vanished prior to judgment than when the landmark was visible during judgment. Memory for stationary targets offset from the major vertical or horizontal cardinal axis of the landmark was also displaced toward that cardinal axis. The data support the hypotheses that spatial memory averaging of the locations of a target and landmark occurs, and that this averaging may be combined with representational gravity in determining the remembered position of a stationary target. Received: 17 May 1999 / Accepted: 8 February 2000  相似文献   

20.
Ellard CG  Wagar LS 《Perception》2008,37(7):1044-1053
Many experiments have shown that a brief visual preview provides sufficient information to complete certain kinds of movements (reaching, grasping, and walking) with high precision. This suggests that participants must possess a calibration between visual target location and the kinaesthetic, proprioceptive, and/or vestibular stimulation generated during movement towards the target. We investigated the properties of this calibration using a cue-conflict paradigm in which participants were trained with mismatched locomotor and visual input. After training, participants were presented with visual targets and were asked to either walk to them or locate them in a spatial updating task. Our results showed that the training was sufficient to produce significant, systematic miscalibrations of the association between visual space and action space. These findings suggest that the association between action space and visual space is modifiable by experience. This plasticity could be either due to modification of a simple, task-specific sensory motor association or it could reflect a change in the gain of a path integration signal or a reorganisation of the relationship between perceived space and action space. We suggest further experiments that might help to distinguish between these possibilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号