首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The processing of sine-wave gratings presented to the left and right visual fields was examined in four experiments. Subjects were required either to detect the presence of a grating (Experiments 1 and 2) or to identify the spatial frequency of a grating (Experiments 3 and 4). Orthogonally to this, the stimuli were presented either at threshold levels of contrast (Experiments 1 and 3) or at suprathreshold levels (Experiments 2 and 4). Visual field and spatial frequency interacted when the task required identification of spatial frequency, but not when it required only stimulus detection. Regardless of contrast level (threshold, suprathreshold), high-frequency gratings were identified more readily in the right visual field (left hemisphere), whereas low-frequency gratings showed no visual field difference (Experiment 3) or were identified more readily in the left visual field (right hemisphere) (Experiment 4). Thus, hemispheric asymmetries in the processing of spatial frequencies depend on the task. These results support Sergent’s (1982) spatial frequency hypothesis, but only when the computational demands of the task exceed those required for the simple detection of the stimuli.  相似文献   

2.
Visual field effects in the discrimination of sine-wave gratings   总被引:2,自引:0,他引:2  
The time needed to decide whether the second of two successively presented sinusoidal gratings was of a higher or lower spatial frequency than the first was measured for spatial frequencies of 1, 2, 4, 8, and 12 cycles per degree (cpd) presented in either the left visual field (LVF) or right visual field (RVF). A LVF advantage was found for discriminating within the low-spatial-frequency range (i.e., 1 and 2 cpd), whereas a RVF advantage was found for discriminating within the high-spatial-frequency range (i.e., 4-12 cpd). These findings support the conclusion that hemispheric asymmetries in the processing of gratings arise when comparisons are made between the output of spatial-frequency channels.  相似文献   

3.
Three experiments on visual field differences in motion perception are reported. Experiment 1 employed circular stimuli that grew or shrank either quickly or slowly. Experiments 2 and 3 employed circles that moved upward or downward either quickly or slowly. Judgments based on categorical equivalence classes (i.e., grow/shrink, upward/downward) generally yielded small and nonsignificant right visual field advantages. Judgments based on the precise coordinates of motion (i.e., quickly/slowly) yielded significant left visual field advantages across all three experiments. Results are interpreted in light of Kosslyn’s (1987) model of hemispheric differences in the processing of categorical versus coordinate spatial relations.  相似文献   

4.
The hypothesis that the two cerebral hemispheres are specialized for processing different visual spatial frequencies was investigated in three experiments. No differences between the left and right visual fields were found for: (1) contrast-sensitivity functions measured binocularly with vertical gratings ranging from 0.5 to 12 cycles per degree (cpd); (2) visible persistence durations for 1- and 10-cpd gratings measured with a stimulus alternation method; and (3) accuracy (d') and reaction times to correctly identify digitally filtered letters as targets (L or H) or nontargets (T or F). One significant difference, however, was found: In Experiment 3, a higher decision criterion (beta) was used when filtered letters were identified in the right visual field than when they were identified in the left. The letters were filtered with annular, 1-octave band-pass filters with center spatial frequencies of 1, 2, 4, 8, and 16 cpd. Combining four center frequencies with three letter sizes (0.5 degrees, 1 degree, and 2 degrees high) made some stimuli equivalent in distal spatial frequency (cycles per object) and some equivalent in proximal spatial frequency (cycles per degree). The effective stimulus in the third experiment seemed to be proximal spatial frequency (cycles per degree) not distal (cycles per object). We conclude that each cerebral hemisphere processes visual spatial frequency information with equal accuracy but that different decision rules are used.  相似文献   

5.
Observers indicated whether a stimulus presented to one visual field or the other consisted of two sine-wave gratings (the baseline stimulus) or those same two gratings with the addition of a 2 cycle per degree (cpd) component. When the absolute spatial frequencies of the baseline stimulus were low (0.5 and 1.0 cpd), there was a left visual field-right hemisphere (LVF-RH) advantage in reaction time (RT) to respond to the baseline stimulus which disappeared when the 2 cpd component was added (i.e., the stimulus consisted of 0.5, 1.0, and 2.0 cpd components). When the absolute spatial frequencies of the baseline stimulus were moderate to high (4.0 and 8.0 cpd), a right visual field-left hemisphere advantage in RT to respond to the baseline stimulus approached significance and shifted to a significant LVF-RH advantage when the 2 cpd component was added (i.e., the stimulus consisted of 2.0, 4.0, and 8.0 cpd components. That is, adding the same 2 cpd component caused opposite shifts in visual laterality depending on whether 2 cpd was a relatively high or relatively low frequency compared to the baseline.  相似文献   

6.
The McCollough effect was shown to be spatial-frequency selective by Lovegrove and Over (1972) after adaptation with vertical colored square-wave gratings separated by 1 octave. Adaptation with slide-presented red and green vertical square-wave gratings separated by 1 octave failed to produce contingent color aftereffects (CAEs).However, when each of these gratings was adapted alone, strong CAEs were produced. Adaptation with vertical colored sine-wave gratings separated by 1 octave also failed to produce CAEs, but strong effects were produced by adaptation with each grating alone. By varying the spatial frequency of the test sine wave, CAEs were found to be tuned for spatial frequency at 2.85 octaves after adaptation of 4 cycles per degree (cpd) and at 2.30 octaves after adaptation of 8 cpd. Adaptation of both vertical and horizontal sine-wave gratings produced strong CAEs, with bandwidths ranging from 1.96 to 2.90 octaves and with lower adapting contrast producing weaker CAEs. These results indicate that the McCollough effect is more broadly tuned for spatial frequency than are simple adaptation effects.  相似文献   

7.
Observers classified sine-wave and square-wave gratings on the basis of fundamental frequency (Are the bars wide or narrow?) or on the basis of higher harmonic frequencies (Are the bars sharp or fuzzy?). Stimuli were presented in either the left (LVF) or right (RVF) visual field. When the classification was made on the basis of the fundamental frequencies (1 or 3 c/deg), there was a LVF/right hemisphere advantage. However, when the classification was on the basis of a sharp/fuzzy distinction which involved searching for the higher harmonic frequencies, then a RVF/left hemisphere advantage was found.  相似文献   

8.
The McCollough effect was shown to be spatial-frequency selective by Lovegrove and Over (1972) after adaptation with vertical colored square-wave gratings separated by 1 octave. Adaptation with slide-presented red and green vertical square-wave gratings separated by 1 octave failed to produce contingent color aftereffects (CAEs). However, when each of these gratings was adapted alone, strong CAEs were produced. Adaptation with vertical colored sine-wave gratings separated by 1 octave also failed to produce CAEs, but strong effects were produced by adaptation with each grating alone. By varying the spatial frequency of the test sine wave, CAEs were found to be tuned for spatial frequency at 2.85 octaves after adaptation of 4 cycles per degree (cpd) and at 2.30 octaves after adaptation of 8 cpd. Adaptation of both vertical and horizontal sine-wave gratings produced strong CAEs, with bandwidths ranging from 1.96 to 2.90 octaves and with lower adapting contrast producing weaker CAEs. These results indicate that the McCollough effect is more broadly tuned for spatial frequency than are simple adaptation effects.  相似文献   

9.
Kosslyn (1987) theorized that the left and right hemispheres differ in processing categorical and coordinate spatial relationships, respectively. Previc (1990) hypothesized that the upper and lower visual fields are functionally specialized for visual search and visuomotor manipulations, respectively. Conceptual similarities between these two theories suggested possible upper visual field advantages for categorical judgments and lower visual field advantages for coordinate judgments. In the present two experiments, subjects made either categorical or coordinate judgments to stimuli in the upper left, upper right, lower left, or lower right visual fields. The first experiment manipulated categorical/coordinate judgments as a between-subjects variable. The second experiment manipulated categorical/coordinate judgments as a within-subjects variable. In the first experiment, reaction times (RTs) for categorical judgments were equal in all visual fields except the lower left, in which RTs were slower. For coordinate judgments, RTs were equal in all visual fields except the lower left, in which RTs were faster. In general, these effects were replicated in the second experiment. However, there appeared to be consequences associated with manipulating the categorical/coordinate variable in a within-subjects fashion. The requirements of visual search versus visuomotor processes appear to map onto the nature of categorical versus coordinate processing, respectively, suggesting possible upper-lower visual field differences in categorical versus coordinate processing.  相似文献   

10.
Subjects were exposed to a vertical chromatic grating alternating with horizontal chromatic grating of the identical frequency. They were then tested with a series of test gratings of varied spatial frequencies to examine whether the responses were effected by the spatial frequency of the adaptation pattern in relation to the test pattern. It was found that maximum response occurred when adaptation and test gratings had the same spatial frequency, the effect was asymmetric and finally that enhancements were found at octaves. Thus the experiment further demonstrated that neural elements specific to spatial frequency exist in the human visual system.  相似文献   

11.
Hemispheric processing differences were assessed by presenting square matrices that varied in size and the number of filled-in cells. Subjects judged whether the matrix contained an even or odd number of filled cells. Experiment 1 employed relatively small matrix sizes (2 x 2, 3 x 3, and 4 x 4), and Experiment 2 employed relatively large matrix sizes (4 x 4, 6 x 6, and 8 x 8). Response time was shorter and error rates lower for left visual field/right hemisphere (LVF/RH) presentations compared to right visual field/left hemisphere (RVF/LH) presentations, with the larger matrices demonstrating the strongest visual field/hemispheric effects. Increases in the number of filled cells contributed to increases for the LVF/RH response time advantage only for the larger arrays. Analysis of the data from both studies collapsed across the number of filled cells produced highly consistent LVF/RH advantages for both response time and error rate, with stronger LVF/RH advantages found for the larger matrix sizes of both studies. The findings suggest that visual stimulus spatial frequency is a key determinant of hemispheric processing advantages, but that this factor is constrained by stimulus size variation. Theoretical implications with respect to the hemispheric processing double filtering by frequency model are discussed.  相似文献   

12.
Three experiments were conducted to examine the effects of stimulus exposure duration, retinal eccentricity, visual noise and task differences (physical classification and semantic classification) on the processing of Kana (Japanese phonetic symbol) words presented to the left and right visual fields. The primary findings of the three experiments were as follows. The right visual field advantage was found in the shorter exposure duration but no visual field difference was shown in the longer exposure duration condition (experiment 1). Stimulus presentation to large and small retinal eccentricity conditions revealed similar visual field difference (experiment 2). No significant visual field difference was shown in both clear and blurred stimulus presentation conditions (experiment 3). Semantic classification task revealed a right visual field advantage in all experiments whereas no visual field difference was shown in physical classification task in experiments 2 and 3. These results were discussed in terms of spatial frequency hypothesis and levels of processing hypothesis.  相似文献   

13.
The effect of alcohol (breath-alcohol level of 0.1%) on perceptual discrimination of low (1.5 cycles deg-1) and high (8 cycles deg-1) spatial frequencies in the left and right visual field was measured in eighteen right-handed males, in a double-blind, balanced placebo design. Discrimination thresholds for briefly (180 ms) presented sinusoidal gratings were determined by two-alternative forced-choice judgments with four interleaving psychophysical staircases providing random trial-to-trial variation of reference spatial frequency and visual field, in addition to a random (+/- 10%) jitter of reference spatial frequency. Alcohol produced overall higher discrimination thresholds but did not alter the visual-field balance: no main effect of visual field was observed, but in both placebo and alcohol conditions spatial frequency interacted with visual field in the direction predicted by the spatial-frequency hypothesis of hemispheric asymmetry in visual-information processing, with left-visual-field/right-hemisphere superiority in discrimination of low spatial frequencies and right-visual-field/left-hemisphere superiority in discrimination of high spatial frequencies.  相似文献   

14.
Hemispheric processing of global form, local form, and texture.   总被引:1,自引:0,他引:1  
Hemispheric processing of global form, local form, and texture of hierarchical patterns composed of many, relatively small elements and patterns composed of few, relatively large elements was examined in two experiments, employing a Stroop-type paradigm. In experiment 1 subjects were instructed to attend either to the global or the local level of the pattern and to identify the form at the designated level. In experiment 2 subjects were to identify the global form or the texture. A right visual field (left hemisphere) advantage was obtained for detection of local form, and a left visual field (right hemisphere) advantage was obtained for detection of global form. When many-element patterns were processed in terms of global form and texture, the results failed to show reliable hemispheric differences. The results suggest that the hemispheres differ in their sensitivity to the relatively more global versus the relatively more local aspects of visual patterns which require focused attention (as in global/local form detection). When the task involved distributed attention (as in texture detection) no lateralized effects were observed.  相似文献   

15.
This study investigates whether the right hemisphere has more flexible contrast gain control settings for the identification of spatial frequency. Right-handed participants identified 1 and 9 cycles per degree sinusoidal gratings presented either to the left visual field-right hemisphere (LVF-RH) or the right visual field-left hemisphere (RVF-LH). When luminance contrast was randomized across a wide range (20-60%), performance gradually improved with contrast in the LVF-RH. Conversely, performance in the RVF-LH was disrupted and saturated for 20 and 60% of contrast, respectively, leading to a LVF-RH advantage for these contrast levels. When contrast was blocked or randomized for a smaller range (30-50%), the LVF-RH advantage was diminished. Flexible contrast gain control is needed when contrast is randomized across a wide range, but not when it is blocked or randomized across a smaller range. The results therefore suggest that the right hemisphere is able to process spatial frequency information across a wider range of contrast levels than is the left hemisphere.  相似文献   

16.
The aim of the present study was to determine how interhemispheric collaboration and visual attention in basic lexical tasks develop during early childhood. Two- to 6-year-old children were asked to name two different pictures presented simultaneously either one in each visual hemifield (bilateral condition) or both in a single hemifield (either right or left, unilateral condition). In the bilateral condition, children were overall more accurate in naming right visual field than left visual field pictures. This difference was significant for 2- and 3- to 4-year-old children, but not for 5- to 6-year-old children. These results show that the right and left cerebral hemispheres do not develop naming competencies equally well in early childhood. A second analysis, based on the order of report, showed that when 2- and 3- to 4-year-old children named both the left and the right visual field pictures, they named the right visual field picture first. In contrast, at the age of 5-6 years, children named the left visual field picture first and overall naming performance reached a ceiling level. Several interpretations are proposed to explain this shift of visual attention at the age of 5-6 years. In the unilateral condition, no difference was found between naming accuracy in the right and left visual fields, presumably because interhemispheric pathways are functional: visual stimuli presented to the right hemisphere can be processed by the most competent left hemisphere without degradation of information. This result confirms previous findings on the development of interhemispheric collaboration.  相似文献   

17.
Since available evidence indicates that the two cerebral hemispheres are differentially sensitive to different types of stimulus information, and that they also utilize different strategies in processing information, is it possible that the two hemispheres are differentially sensitive to adaptation? Three groups of four subjects each were adapted to black and white gratings using three adapting durations: 500, 1,000, and 5,000 msec. Immediately following adaptation, a test grating was presented in either the left or right visual field. The task of the subject was to determine whether the lines of the adapting and test gratings had the same orientation or not. Analysis showed that in the 5,000-msec and 1,000-msec conditions, more errors occurred with left visual field presentations, responses to left visual field presentations took longer, and a bias-free measure showed that subjects were more sensitive to right visual field presentations. For the 500-msec group, there were no apparent differences between left and right visual fields presentations. The results indicate differential effects of adaptation on the two hemispheres, suggesting sensitivity differences between the two halves of the brain.  相似文献   

18.
The present study tested for effects of number of flankers positioned to the left and to the right of target characters as a function of visual field and stimulus type (letters or shapes). On the basis of the modified receptive field hypothesis (Chanceaux & Grainger, 2012), we predicted that the greatest effects of flanker interference would occur for leftward flankers with letter targets in the left visual field. Target letters and simple shape stimuli were briefly presented and accompanied by either 1, 2, or 3 flankers of the same category either to the left or to the right of the target, and in all conditions with a single flanker on the opposite side. Targets were presented in the left or right visual field at a fixed eccentricity, such that targets and flankers always fell into the same visual field. Results showed greatest interference for leftward flankers associated with letter targets in the left visual field, as predicted by the modified receptive field hypothesis.  相似文献   

19.
Levy J  Yovel G  Bean M 《Brain and language》2003,87(3):432-440
The influence of lateralized unattended stimuli on the processing of attended stimuli in the opposite visual field can shed light on the nature of information that is transferred between hemispheres. On a cued bilateral task, participants tried to identify a syllable in the attended visual field, which elicits a left hemisphere (LH) advantage and different processing strategies by the two hemispheres. The same or a different syllable or a neutral stimulus appeared in the unattended field. Transmission of unattended syllable codes between hemispheres is symmetric, as revealed by equal interference for the two visual fields. The LH is more accurate than the RH in encoding unattended syllables, as indicated by facilitation in the left but not right visual field and a greater frequency of identifiable intrusions into the left than right field. However, asymmetric encoding strategies are different for attended and unattended syllables.  相似文献   

20.
赵益  何东军 《心理科学》2021,(3):530-536
为了研究眼跳的双相调节理论是否适用于人类的视觉系统,本研究测量了人类被试对分别呈现在三种眼跳时间段(基线、眼跳抑制和眼跳增强)内的光栅的朝向辨别准确率。研究发现:相对于光栅呈现在基线时间段内,被试对呈现在抑制(或增强)时间段内的光栅的朝向辨别准确率显著地更低(或更高)(实验1);另外,只有使用低或中等空间频率光栅作为测试刺激时,才有这种双相调节作用(实验2)。这些结果表明:人类的视觉系统在眼跳过程中存在双相调节机制,并且这种双相调节机制具有刺激选择性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号