首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Humans' inability to move fast and accurately at the same time is expressed in Fitts's law. It states that the movement time between targets depends on the index of difficulty, which is a function of the target width and the inter-target distance. The present study investigated the electrophysiological correlates of Fitts's law during action planning using high-density electroencephalography. Movement times were scaled according to Fitts's law, indicating that participants could not overcome the speed-accuracy trade-off during a 1-s preparation period. Importantly, the index of difficulty of the planned movement correlated linearly with the amplitudes of the cognitive N2 and P3b components, which developed during the planning period over parieto-occipital areas. These results suggest that the difficulty of a movement during action planning is represented at a level where perceptual information about the difficulty of the ensuing action is linked to motor programming of the required movement.  相似文献   

2.
Fitts's law holds that movement time (MT) increases with longer distances. Here we report a violation of this law: When the target appears in a structured, linear display with placeholders indicating the possible target locations, MT to the most distant target is not longer than MT to the second most distant target, but rather tends to be shorter. Furthermore, the presence of placeholders attenuates the range effect that occurs in the absence of placeholders. These findings suggest that Fitts's law may be limited to egocentric visuomotor action, and that the visual control of hand movements may use allocentric, in addition to egocentric, spatial information.  相似文献   

3.
On the basis of recent observations of a modulation of Fitts's law for manual pointing movements in structured visual arrays (J. J. Adam, R. Mol, J. Pratt, & M. H. Fischer, 2006; J. Pratt, J. J. Adam, & M. H. Fischer, 2007), the authors examined whether a similar modulation occurs for saccadic eye movements. Healthy participants (N = 19) made horizontal saccades to targets that appeared randomly in 1 of 4 positions, either on an empty background or within 1 of 4 placeholder boxes. Whereas in previous studies, placeholders caused a decrease in movement time (MT) without the normal decrease in movement accuracy predicted by Fitts's law, placeholders in the present experiment increased saccadic accuracy (decreased endpoint variability) without an increase in MT. The present results extend the findings of J. J. Adam et al. of a modulation of Fitts's law from the temporal domain to the spatial domain and from manual movements to eye movements.  相似文献   

4.
Ample research demonstrated that empathizing with someone in need promotes helping that person. Two studies examined whether this effect of empathy on helping behavior holds across different emotional reactions expressed by a target in need. Results of Study 1 indicate that perspective taking with a sad needy target increased empathic concern which, in turn, fostered helping the individual. This relation was not found for participants taking the perspective of angry or disgusted needy targets. Study 2 provides further support for the underlying mechanism of the results of Study 1. Perspective taking with a sad needy target increased empathizers’ empathic concern because perception of target neediness was increased. Again, this pattern was not found for perspective taking with an angry needy target. The findings correspond to theorizing on the role of emotions in person perception. Hence, the current research provides insights regarding the boundary conditions of the empathy-helping association.  相似文献   

5.
This experiment tested whether the perceived stability of the environment is altered when there is a combination of eye and visually open-loop hand movements toward a target displaced during the eye movements, i.e., during saccadic suppression. Visual-target eccentricity randomly decreased or increased during eye movements and subjects reported whether they perceived a target displacement or not, and if so, the direction of the displacement. Three experimental conditions, involving different combinations of eye and arm movements, were tested: (a) eye movements only; (b) simultaneous eye and rapid arm movements toward the target; and (c) simultaneous eye and arm movements with a restraint blocking the arm as soon as the hand left the starting position. The perceptual threshold of target displacements resulting in an increased target eccentricity was greater when subjects combined eye and arm movements toward the target object, specially for the no-restraint condition. Subjects corrected most of their arm trajectory toward the displaced target despite the short movement times (average MT = 189 ms). After the movements, the null error feedback of the hand's final position presumably overlapped the retino-oculomotor signal error and could be responsible for the deficient perception of target displacements. Thus, subjects interpreted the terminal hand positions as being within the range of the endpoint variability associated with the production of rapid arm movements rather than as a change of the environment. These results suggest that a natural strategy adopted for processing spatial information, especially in a competing situation, could favour a constancy tendency, avoiding systematic perception of a change of environment for any noise or variability at the central or peripheral levels.  相似文献   

6.
This experiment examined whether rapid arm movements can be corrected in response to a change in target position that occurs just prior to movement onset, during saccadic suppression of displacement. Because the threshold of retinal input reaches its highest magnitude at that time, displacement of the visual target of a saccade is not perceived. Subjects (N = 6) were instructed to perform very rapid arm movements toward visual targets located 16, 20, and 24 degrees from midline (on average, movement time was 208 ms). On some trials the 20 degrees target was displaced 4 degrees either to the right or to the left during saccadic suppression. For double-step trials, arm movements did not deviate from their original trajectory. Movement endpoints and movement structure (i.e., velocity-and acceleration-time profiles) were similar whether or not target displacements occurred, showing the failure of proprioceptive signals or internal feedback loops to correct the arm trajectory. Following this movement, terminal spatially oriented movements corrected the direction of the initial movement (as compared with the single-step control trials) when the target eccentricity decreased by 4 degrees. Subjects were unaware of these spatial corrections. Therefore, spatial corrections of hand position were driven by the goal level of the task, which was updated by oculomotor corrective responses when a target shift occurred.  相似文献   

7.
Can one's limb be accurately positioned to a spatial location without a veridical estimate of the initial conditions of movement? The experiment reported here examined this question by distorting perception of a limb's starting position via muscle vibration. Subjects executed rapid flexion movements under no-vibration, contralateral arm vibration, and ipsilateral arm vibration conditions. Vibration was applied to the biceps for 10 sec prior to the start of a reproduction movement. The results showed that vibration on the ipsilateral arm caused a significant increase in reproduction error, relative to the no-vibration and contralateral-vibration conditions. This finding provides additional evidence that accurate knowledge about the initial conditions of movement is a necessary component in positioning a limb.  相似文献   

8.
Can one’s limb be accurately positioned to a spatial location without a veridical estimate of the initial conditions of movement? The experiment reported here examined this question by distorting perception of a limb’s starting position via muscle vibration. Subjects executed rapid flexion movements under no-vibration, contralateral arm vibration, and ipsilateral arm vibration conditions. Vibration was applied to the biceps for 10 sec prior to the start of a reproduction movement. The results showed that vibration on the ipsilateral arm caused a significant increase in reproduction error, relative to the no-vibration and contralateral-vibration conditions. This finding provides additional evidence that accurate knowledge about the initial conditions of movement is a necessary component in positioning a limb.  相似文献   

9.
Three-dimensional curvature of point-to-point hand movements in the forward direction was examined. Subjects (N = 4) moved their hand from a position above the start point to a forward position above targets of different size and distance. Paths were curved as a result of an initial lateral and downward movement that was compensated for in the second half of the movement. The downward component of motion had a bell-shaped velocity profile and was temporally coupled to the forward motion. Curvature was greater for movements to near targets. Examination of the relation between kinematics and geometry revealed that velocity was related to radius of curvature by a power law with an exponent of 0.59. Simulations of the component of motion in the vertical plane reproduced the qualitative behavior of curvature and fit a power law relationship between velocity and radius of curvature  相似文献   

10.
We tested the ability of the mature visual system for discrimination between types of elliptic biological motion on the basis of event kinematics. Healthy adult volunteers were presented with point-light displays depicting elliptic motion when only a single dot, a moving point-light arm, or a whole point-light human figure was visible. The displays were created in accordance with the two-thirds power kinematic law (natural motion), whereas the control displays violated this principle (unnatural motion). On each trial, participants judged whether the display represented natural or unnatural motion. The findings indicate that adults are highly sensitive to violation of the two-thirds power kinematic law. Notably, participants can easily discriminate between natural and unnatural motions without recognising the stimuli, which suggests that people implicitly use kinematic information. Most intriguing, event recognition seems to diminish the capacity to judge whether event kinematics is unnatural. We discuss possible ways for a cross-talk between perception and production of biological movement, and the brain mechanisms involved in biological motion processing.  相似文献   

11.
Fitts's Law predicts increasing movement times (MTs) with increasing movement amplitudes; however, when targets are placed in a structured perceptual array containing placeholders, MTs to targets in the last position are shorter than predicted. We conducted three experiments to determine if this modulation has a perceptual cause. Experiment 1, which used extremely diminished (three pixel) placeholders, showed that the modulation is not due to perceptual interference from neighboring placeholders. Experiment 2, which measured reaction times using a target detection task, showed that the modulation does not result from speeded perceptual processing at the last position of the array. Experiment 3, which measured accuracy using a masked letter-discrimination task, showed that the modulation does not result from the increased quality of perceptual representation at the last position of the array. Overall, these findings suggest that the changes in effectiveness of visual processing (less interference, speeded processing, and increased quality) at the last position in the perceptual array do not drive the modulation. Thus, while the locus of the Fitts's Law modulation appears to be in the movement planning stage, it is likely not due to perceptual mechanisms.  相似文献   

12.
Abstract

Reaching movements generate reaction forces that affect postural stability, requiring sophisticated coordination between body and arm movement to maintain balance. In voluntary movement, this coordination involves feedforward shifts of posture, and such anticipatory postural muscle activity also accompanies the rapid modulation of an ongoing point to suddenly a shifting target (double-step). However, it is unknown if this early postural activity depends on target-shift predictability and whether arm and body motion are similar coordinated to voluntary movement. Body and arm motion coordination during double-step pointing movements from standing were done under differing conditions of target-shift predictability. In a proportion of trials, the pointing target was displaced, with the predictability of target-shift direction varied between two peripheral targets (target-shift direction known) and two central targets (target-shift direction uncertain). The target jump evoked an adjustment in the arm then body response, opposite to the pointing responses to the initial target. The triggered arm-then-body ordering was consistent across target-shift predictability, although known target-shift direction resulted in closer timing of arm and body onsets. The altered coordination in triggered corrections suggests that the body component in triggered reactions depend on response predictability, showing an altered control of arm and body motion.  相似文献   

13.
Sometimes a goal-directed arm movement has to be modified en route due to an unforeseen perturbation such as a target displacement or a hand displacement by an external force. In this paper several aspects of that modification process are addressed. Subjects had to perform a point-to-point movement task on a computer screen using a mouse-coupled pointer as the representation of the hand position. Trajectory modifications were imposed by unexpectedly changing the position of the target or by changing the relation between mouse and screen pointer.In the first series of experiments, we examined how often a trajectory is updated. Here, trajectory modifications were imposed by unexpectedly changing the normal relation between mouse and pointer to a shear-like relation, where a percentage of the forward/backward position of the hand was added to the pointer position in the left/right direction. Withdrawal of visual feedback during the movement revealed that trajectories were updated at interval times shorter than 200 ms. From the similarity with experiments where the original relation between mouse and pointer was restored during the movements, we conclude that motor plans are updated on-line to move the hand from its current perceived position to the target.In a second series of experiments, we studied whether a continuous change in target position yields similar trajectory modifications as a continuous hand displacement. To mimic the latter perturbation, we used the above-mentioned distortion of the mouse-pointer relation. We found that the resulting hand paths did not differ for the two visual perturbations and conclude that the perturbed, goal-directed movements are modified in a consistent way, irrespective of whether the position of the target or hand was perturbed. Simulations of the experimental data with a kinematic reaching model support this conclusion.  相似文献   

14.
Studies of movement production have shown that the relationship between the amplitude of a movement and its duration varies according to the type of gesture. In the case of pointing movements the duration increases as a function of distance and width of the target (Fitts' law), whereas for writing movements the duration tends to remain constant across changes in trajectory length (isochrony principle). We compared the visual perception of these two categories of movement. The participants judged the speed of a light spot that portrayed the motion of the end-point of a hand-held pen (pointing or writing). For the two types of gesture we used 8 stimulus sizes (from 2.5 cm to 20 cm) and 32 durations (from 0.2 s to 1.75 s). Viewing each combination of size and duration, participants had to indicate whether the movement speed seemed "fast", "slow", or "correct". Results showed that the participants' perceptual preferences were in agreement with the rules of movement production. The stimulus size was more influential in the pointing condition than in the writing condition. We consider that this finding reflects the influence of common representational resources for perceptual judgment and movement production.  相似文献   

15.
The purpose of this study was to investigate whether the dual task paradigm would influence arm movements during walking. Furthermore, we examined the effects of different walking surfaces on arm movements while performing dual tasks. The effects of age and gender were also investigated. Fifteen young adults and 15 older adults were included in this study. Subjects were asked to perform the walking task alone (single-task trial) and walking in combination with a cognitive task (dual-task trial). Four walking conditions (1 single task and 3 dual task trials)×two walking surfaces were encountered. Both age groups had greater elbow and trunk movement in the sagittal plane under the dual task trials as compared to the single task trial (p<.05). Subjects had greater upper extremity and upper body movement on the soft floor than on the hard floor (p<.05). Subjects had greater movement amplitude when confronting a challenging environment, especially in the contralateral side. Among gender, there was a group-gender interaction: the older females had smaller upper extremity movement than the older males (p<.05) but the opposite was true for the young adults. The results suggest that different age groups of males and females use different balance control strategy to deal with the challenging conditions.  相似文献   

16.
Heider (1958) has suggested that perception aides control and power over that which is perceived. Individuals' belief in this assumption was tested in an interpersonal situation. Subjects were given the expectation that they would be either cooperating or competing with another person in a game. Half of the subjects were lead to believe they would be interviewing their partner or opponent before the game, and half expected to be interviewed. Subjects who expected to interview the other could choose whether or not to see the other person through a one-way mirror. Subjects who expected to be interviewed could choose whether or not they wanted to be seen by the other. As predicted, the tendency to choose to allow perception was strong in all conditions except the condition in which subjects expected to compete with the other and might be seen by him.  相似文献   

17.
18.
Some reaction time experiments are reported on the relation between the perception and production of phonetic features in speech. Subjects had to produce spoken consonant-vowel syllables rapidly in response to other consonant-vowel stimulus syllables. The stimulus syllables were presented auditorily in one condition and visually in another. Reaction time was measured as a function of the phonetic features shared by the consonants of the stimulus and response syllables. Responses to auditory stimulus syllables were faster when the response syllables started with consonants that had the same voicing feature as those of the stimulus syllables. A shared place-of-articulation feature did not affect the speed of responses to auditory stimulus syllables, even though the place feature was highly salient. For visual stimulus syllables, performance was independent of whether the consonants of the response syllables had the same voicing, same place of articulation, or no shared features. This pattern of results occurred in cases where the syllables contained stop consonants and where they contained fricatives. It held for natural auditory stimuli as well as artificially synthesized ones. The overall data reveal a close relation between the perception and production of voicing features in speech. It does not appear that such a relation exists between perceiving and producing places of articulation. The experiments are relevant to the motor theory of speech perception and to other models of perceptual-motor interactions.  相似文献   

19.
A transfer of training design was used to examine the role of the Index of Difficulty (ID) on transfer of learning in a sequential Fitts's law task. Specifically, the role of the ratio between the accuracy and size of movement (ID) in transfer was examined. Transfer of skilled movement is better when both the size and accuracy of movement are changed by the same factor (ID is constant) than when only size or accuracy is changed. The authors infer that the size-accuracy ratio is capturing the control strategies employed during practice and thus promotes efficient transfer. Furthermore, efficient transfer is not dependent on maintaining relative timing invariance and thus the authors provide further evidence that relative timing is not an essential feature of movement control.  相似文献   

20.
The role of the hemispheres in closed loop movements   总被引:3,自引:0,他引:3  
The purpose of these experiments was to determine if the two hemispheres play different roles in controlling closed loop movements. Subjects were asked to move to a narrow or wide target in the left or right hemispace. Reaction time (RT) was faster for the left arm of normals, only in the right hemispace, but there were no differences between arms in movement execution. Right but not left hemisphere stroke (CVA) patients showed longer RTs for the contralateral but not ipsilateral arm. The right CVA group's ipsilateral movement, especially to narrow targets was less accurate. The left CVA group's RT did not benefit from advanced information, but ipsilateral movement execution was normal. These results were discussed in terms of inter- as well as intrahemispheric control of programming and execution of closed loop movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号