首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies (Lanzetta & Orr, 1980, 1981; Orr & Lanzetta, 1980) have demonstrated that fear facial expressions have the functional properties of conditioned excitatory stimuli, while happy expressions behave as conditioned inhibitors of emotional responses. The present study uses a summation conditioning procedure to distinguish between associative and nonassociative (selective sensitizations, attentional) interpretations of these findings. A neutral tone was first established as a conditioned excitatory CS by reinforcing tone presentations with shock. In subsequent nonreinforced test trials the excitatory tone was paired with either fear, happy, or neutral facial expressions. A tone alone and a tone/nonface slide compound were used as controls. The results indicate that phasic and tonic skin conductance responses to the tone/fear expression compound were significantly larger during extinction than for all other experimental and control groups. No significant differences were found among these latter conditions. The findings support the assumption that the excitatory characteristics of fear expressions do not depend on associative mechanisms. In the presence of fear cues, fear facial expressions intensify the emotional reaction and disrupt extinction of a previously acquired fear response. Happy facial expressions however, do not function as conditioned inhibitors in the absence of reinforcement, suggesting that the previously found inhibition was associative in nature.This research was supported by NSF grant No. 77-08926 and by funds from the Lincoln Filene Endowment to Dartmouth College.  相似文献   

2.
Three experiments were conducted to test for the presence of associations between contextual cues and the nominal conditioned stimulus (CS) in fear conditioning. Rats were given tone-footshock pairings and were tested for their fear of the nominal CS, the tone, in a different context. Experiments 1 and 2 demonstrated that rats given nonreinforced exposure to the training context following conditioning were less fearful of the CS. Experiment 3 indicated that additional footshock presentations in the training context following conditioning produced greater fear of the CS. In both procedures postconditioning treatments designed to directly alter only the associative strength of the training context yielded parallel changes in the conditioned response to the CS. These data suggest that within-compound associations are formed between the context and the CS during classical conditioning.  相似文献   

3.
Fear conditioning, including variants such as delay and trace conditioning that depend on different neural systems, is widely used to behaviorally characterize genetically altered mice. We present data from three strains of mice, C57/BL6 (C57), 129/SvlmJ (129), and a hybrid strain of the two (F(1) hybrids), trained on various versions of a trace fear-conditioning protocol. The initial version was taken from the literature but included unpaired control groups to assess nonassociative effects on test performance. We observed high levels of nonassociative freezing in both contextual and cued test conditions. In particular, nonassociative freezing in unpaired control groups was equivalent to freezing shown by paired groups in the tests for trace conditioning. A number of pilot studies resulted in a new protocol that yielded strong context conditioning and low levels of nonassociative freezing in all mouse strains. During the trace-CS test in this protocol, freezing in unpaired controls remained low in all strains, and both the C57s and F(1) hybrids showed reliable associative trace fear conditioning. Trace conditioning, however, was not obtained in the 129 mice. Our findings indicate that caution is warranted in interpreting mouse fear-conditioning studies that lack control conditions to address nonassociative effects. They also reveal a final set of parameters that are important for minimizing such nonassociative effects and demonstrate strain differences across performance in mouse contextual and trace fear conditioning.  相似文献   

4.
Although the lateral nucleus of the amygdala (LA) is essential for conditioned auditory fear memory, an emerging theme is that plasticity in multiple brain regions contributes to fear memory formation. The LA receives direct projections from the auditory thalamus, specifically the medial division of the medial geniculate nucleus (MGm) and adjacent posterior intralaminar nucleus (PIN). While traditionally viewed as a simple relay structure, mounting evidence implicates the thalamus in diverse cognitive processes. We investigated the role of plasticity in the MGm/PIN in auditory fear memory. First we found that auditory fear conditioning (but not control manipulations) increased the levels of activated CREB in both the MGm and PIN. Next, using viral vectors, we showed that exogenously increasing CREB in this region specifically enhanced formation of an auditory conditioned fear memory without affecting expression of an auditory fear memory, formation of a contextual fear memory, or basic auditory processing. Interestingly, mice with increased CREB levels in the MGm/PIN also showed broad auditory fear generalization (in contrast to control mice, they exhibited fear responses to tones of other frequencies). Together, these results implicate CREB-mediated plasticity in the MGm/PIN in both the formation and generalization of conditioned auditory fear memory. Not only do these findings refine our knowledge of the circuitry underlying fear memory but they also provide novel insights into the neural substrates that govern the degree to which acquired fear of a tone generalizes to other tones.  相似文献   

5.
Auditory fear conditioning requires anatomical projections from the medial geniculate nucleus (MGN) of the thalamus to the amygdala. Several lines of work indicate that the MGN is a critical sensory relay for auditory information during conditioning, but is not itself involved in the encoding of long-term fear memories. In the present experiments, we examined whether the MGN plays a similar role in the extinction of conditioned fear. Twenty-four hours after Pavlovian fear conditioning, rats received bilateral intra-thalamic infusions of either with NBQX (an AMPA receptor antagonist; Experiment 1) or MK-801 (an NMDA receptor antagonist; Experiment 1), anisomycin (a protein synthesis inhibitor; Experiment 2) or U0126 (a MEK inhibitor; Experiment 3) immediately prior to an extinction session in a novel context. The next day rats received a tone test in a drug-free state to assess their extinction memory; freezing served as an index of fear. Glutamate receptor antagonism prevented both the expression and extinction of conditioned fear. In contrast, neither anisomycin nor U0126 affected extinction. These results suggest that the MGN is a critical sensory relay for auditory information during extinction training, but is not itself a site of plasticity underlying the formation of the extinction memory.  相似文献   

6.
7.
The neural circuitry underlying emotional learning and memory is known to involve both the amygdala and hippocampus. Both of these structures undergo anatomical and functional changes during the course of Alzheimer's disease. The present study used expression of the immediate early gene c-Fos to examine the effect of amyloid-induced synaptic pathology on neural activity in the hippocampus and amygdala immediately following Pavlovian fear conditioning. Tg2576 mice underwent cued fear conditioning and the regional interdependencies of c-Fos expression in the hippocampus and the amygdala were assessed using structural equation modelling. Tg2576 mice displayed normal acquisition of conditioned freezing to a punctate auditory cue paired with shock. However, the analysis of c-Fos expression indicated abnormal regional activity in the hippocampal dentate gyrus of Tg2576 mice. Structural equation modelling also supported the view that activity within the amygdala was independent of hippocampal activity in Tg2576 mice (unlike control mice) and regional interaction between the dentate gyrus and CA3 region was disrupted. The results provide novel insight into the effects of excess amyloid production on brain region interdependencies underpinning emotional learning.  相似文献   

8.
Four experiments evaluated possible associative and nonassociative accounts of the retardation in the acquisition of conditioned suppression produced by repeated prior exposure to an electric shock US. Associative interference resulting from conditioning of situational stimuli during preexposure to shock was suggested by the findings that signaling the occurrence of high-intensity shock with a discrete nontarget CS during the preexposure phase reduced the magnitude of the retardation effect compared to an unsignaled shock preexposure treatment (Experiments 1 and 4), nonreinforced presentations of putatively conditioned situational stimuli prior to conditioned suppression training reduced the magnitude of the retardation effect (Experiment 2), and the magnitude of the retardation effect was directly related to the intensity of preexposure shock (Experiment 3). Nonassociative interference was suggested by the finding that signaling the occurrence of low-intensity shock with a discrete nontarget CS during the preexposure phase did not reduce the magnitude of the retardation effect compared to an unsignaled shock preexposure treatment (Experiment 4). It was suggested that associative and nonassociative mechanisms govern the US preexposure phenomenon obtained in the conditioned suppression paradigm, and their relative contribution depends upon the intensity of shock.  相似文献   

9.
Conditioned fear responses to a tone paired with footshock rapidly extinguish when the tone is presented in the absence of the shock. Rather than erase conditioning, extinction is thought to involve the formation of new memory. In support of this, extinguished freezing spontaneously recovers with the passage of time. It is not known, however, how long extinction memory lasts or whether extinction interferes with consolidation of conditioning if given on the same day. To address this, we gave rats 7 trials of auditory fear conditioning followed 1 h later by 20 extinction trials, and tested for spontaneous recovery after a delay of 0, 1, 2, 4, 6, 10, or 14 d. Conditioned freezing to the tone gradually recovered with time to reach 100% by day 10. No-extinction controls indicated that the increase in freezing with time was not owing to incubation of conditioning memory. Complete spontaneous recovery indicates that extinction training given 1 h after conditioning does not interfere with the consolidation of conditioning memory. Despite complete recovery of freezing, rats showed savings in their rate of re-extinction, indicating persistence of extinction memory. These data support the idea that conditioning and extinction of fear are learned by independent systems, each able to retain a long-term memory.  相似文献   

10.
11.
Auditory fear conditioning is one of the most well characterized models used in studies of learning and memory. In order to ensure the animals have been conditioned to fear the auditory stimulus, animals are generally tested for their response to this stimulus in a different context to that used for training. For this reason it is often unclear how much contextual fear conditioning the animals also acquire when they are trained. In this study, we have established a protocol for fear conditioning in mice which is explicit for auditory cues; mice trained using this protocol, show a very low fear response to contextual cues encountered during training. We have undertaken analysis to look for potential brain changes associated with this model by measuring levels of the synaptic vesicle protein, synaptophysin, in the basolateral nuclei of the amygdala following auditory fear conditioning. Our results show levels of synaptophysin were significantly higher in mice which learnt to associate the auditory stimulus with fear, in comparison to all non-learning control animals. These findings support the idea that synaptic plasticity associated with formation of fear conditioning to a single specific conditioned stimulus occurs within the basolateral nuclei of the amygdala. Furthermore, our results demonstrate the usefulness of this model in looking for changes in the brain specific for a defined learning event.  相似文献   

12.
Just as fear can be learned, it can also be inhibited. The most common way of reducing learned fear is through extinction, where the conditioned stimulus (CS) previously paired with an aversive unconditioned stimulus (US) is repeatedly presented on its own. Another, much less commonly studied, way to inhibit learned fear is by habituating, or devaluing, the US. In this procedure, fear responding to a CS is reduced by repeatedly presenting the US in the absence of the CS following the conditioning phase. The purpose of the present study was to directly compare the effects of US habituation and CS extinction on a learned fear response (freezing). Experiment 1 demonstrated that US habituation given either after (Experiment 1A) or before (Experiment 1B) fear conditioning reduced freezing to the CS at test. We then showed that the reduction in freezing resulting from either US habituation or CS extinction was context-specific (i.e., a change in context led to a renewal of the learned fear response; Experiment 2) and, furthermore, was attenuated when a pre-test shock was given (i.e., reinstatement of fear was observed in both cases; Experiment 3). Finally, Experiment 4 demonstrated that an injection of the NMDA antagonist MK-801 prior to US habituation impaired long-term retention of the learning that takes place during this procedure. Together, these results suggest that the decrement in conditioned fear responses produced by US habituation and CS extinction could rely on overlapping processes.  相似文献   

13.
14.
Rats were shocked in a context and then exposed to that context in the absence of shock. Shorter intervals between these extinction trials produced more long-term freezing than did longer ones, and shorter intervals between the final extinction trial and test produced more freezing than did longer ones. A short interval between a context extinction trial and test with an extinguished conditioned stimulus (CS) produced more freezing than did a longer one, and a short interval between a nonreinforced context exposure and an extinguished CS reinstated freezing when the CS was tested 24 hr later. The results suggest that recent fear acts to favor subsequent retrieval of the memory formed at conditioning rather than extinction and to render the retrieved memory more salient.  相似文献   

15.
A visual danger stimulus elicits an escape response in the crab Chasmagnathus that declines after repeated presentations. Previous results report that such waning may be retained as context-signal memory (CSM) or signal memory (SM): CSM is long lasting, associative, and produced by spaced training, while SM is an intermediate memory, nonassociative, and produced by massed training. The performances of both spaced and massed trained crabs are here examined, using video analysis to determine topographic changes in the behavioral response during and after training. During spaced training, escape vanishes and is mainly replaced by freezing, while during massed training, escape decreases over trials without being replaced by any defensive response. After 24 h, the marked proclivity to freezing persists in spaced trained crabs, while a high level of escaping is shown by massed trained crabs. The long-lasting freezing preference of spaced trained crabs proves to be context-specific and apparent from the very first presentation of the danger stimulus at testing, though freezing is not triggered by the sole exposure to the context. We conclude (a) that freezing preference is the acquired response of the CSM process; (b) that CSM can be properly categorized as an instance of contextual conditioning and SM of classical habituation; (c) that CSM and SM are not two phases of a memory processing but two distinctly types of memory; and (d) that therefore, the temporal distribution of training trials has a drastic effect on crab's memory, more dramatic than that previously described. The possibility that massed and spaced presentations of the same stimulus may represent two different stimulus types is discussed.  相似文献   

16.
In Pavlovian fear conditioning, a conditional stimulus (CS, usually a tone) is paired with an aversive unconditional stimulus (US, usually a foot shock) in a novel context. After even a single pairing, the animal comes to exhibit a long-lasting fear to the CS and the conditioning context, which can be measured as freezing, an adaptive defense reaction in mice. Both context and tone conditioning depend on the integrity of the amygdala, and context conditioning further depends on the hippocampus. The reliability and efficiency of the fear conditioning assay makes it an excellent candidate for the screening of learning and memory deficits in mutant mice. One obstacle is that freezing in mice has been accurately quantified only by human observers, using a tedious method that can be subject to bias. In the present study we generated a simple, high-speed, and highly accurate algorithm that scores freezing of four mice simultaneously using NIH Image on an ordinary Macintosh computer. The algorithm yielded a high correlation and excellent linear fit between computer and human scores across a broad range of conditions. This included the ability to score low pretraining baseline scores and accurately mimic the effects of two independent variables (shock intensity and test modality) on fear. Because we used a computer and digital video, we were able to acquire a secondary index of fear, activity suppression, as well as baseline activity scores. Moreover, we measured the unconditional response to shock. These additional measures can enhance the sensitivity of the assay to detect interesting memory phenotypes and control for possible confounds. Thus, this computer-assisted system for measuring behavior during fear conditioning allows for the standardized and carefully controlled assessment of multiple aspects of the fear conditioning experience.  相似文献   

17.
Pairing a previously neutral conditioned stimulus (CS; e.g., a tone) to an aversive unconditioned stimulus (US; e.g., a foot-shock) leads to associative learning such that the tone alone will elicit a conditioned response (e.g., freezing). Individuals can also acquire fear from a social context, such as through observing the fear expression of a conspecific. In the current study, we examined the influence of kinship/familiarity on social transmission of fear in female rats. Rats were housed in triads with either sisters or non-related females. One rat from each cage was fear conditioned to a tone CS+ shock US. On day two, the conditioned rat was returned to the chamber accompanied by one of her cage mates. Both rats were allowed to behave freely, while the tone was played in the absence of the foot-shock. The previously untrained rat is referred to as the fear-conditioned by-proxy (FCbP) animal, as she would freeze based on observations of her cage-mate’s response rather than due to direct personal experience with the foot-shock. The third rat served as a cage-mate control. The third day, long-term memory tests to the CS were performed. Consistent with our previous application of this paradigm in male rats (Bruchey et al. in Behav Brain Res 214(1):80–84, 2010), our results revealed that social interactions between the fear conditioned and FCbP rats on day two contribute to freezing displayed by the FCbP rats on day three. In this experiment, prosocial behavior occurring at the termination of the cue on day two was significantly greater between sisters than their non-sister counterparts, and this behavior resulted in increased freezing on day three. Our results suggest that familiarity and/or kinship influences the social transmission of fear in female rats.  相似文献   

18.
The hypothesis that the standard acoustic startle habituation paradigm contains the elements of Pavlovian fear conditioning was tested. In a potentiated startle response paradigm, a startle stimulus and a light conditioned stimulus (CS) were paired. A startle stimulus then was tested alone or following the CS. Freezing behavior was measured to index conditioned fear. The startle response was potentiated on CS trials, and rats froze more in CS than in non-CS periods. In Experiment 1, response to a previously habituated, weak startle stimulus was potentiated. In Experiment 2, response to the same stimulus used as the unconditioned stimulus (US) in training was potentiated. This CS-potentiated response retarded the course of response decrements over training sessions as compared with an explictly unpaired control group. Conditioned fear is a standard feature of this habituation paradigm, serves to potentiate the startle response, and provides an associative dimension lacking in the habituation process per se.  相似文献   

19.
Recent studies using lesion, infusion, and unit-recording techniques suggest that the infralimbic (IL) subregion of medial prefrontal cortex (mPFC) is necessary for the inhibition of conditioned fear following extinction. Brief microstimulation of IL paired with conditioned tones, designed to mimic neuronal tone responses, reduces the expression of conditioned fear to the tone. In the present study we used microstimulation to investigate the role of additional mPFC subregions: the prelimbic (PL), dorsal anterior cingulate (ACd), and medial precentral (PrCm) cortices in the expression and extinction of conditioned fear. These are tone-responsive areas that have been implicated in both acquisition and extinction of conditioned fear. In contrast to IL, microstimulation of PL increased the expression of conditioned fear and prevented extinction. Microstimulation of ACd and PrCm had no effect. Under low-footshock conditions (to avoid ceiling levels of freezing), microstimulation of PL and IL had opposite effects, respectively increasing and decreasing freezing to the conditioned tone. We suggest that PL excites amygdala output and IL inhibits amygdala output, providing a mechanism for bidirectional modulation of fear expression.  相似文献   

20.
Synaptically released Zn2+ is a potential modulator of neurotransmission and synaptic plasticity in fear-conditioning pathways. Zinc transporter 3 (ZnT3) knock-out (KO) mice are well suited to test the role of zinc in learned fear, because ZnT3 is colocalized with synaptic zinc, responsible for its transport to synaptic vesicles, highly enriched in the amygdala-associated neural circuitry, and ZnT3 KO mice lack Zn2+ in synaptic vesicles. However, earlier work reported no deficiency in fear memory in ZnT3 KO mice, which is surprising based on the effects of Zn2+ on amygdala synaptic plasticity. We therefore reexamined ZnT3 KO mice in various tasks for learned and innate fear. The mutants were deficient in a weak fear-conditioning protocol using single tone-shock pairing but showed normal memory when a stronger, five-pairing protocol was used. ZnT3 KO mice were deficient in memory when a tone was presented as complex auditory information in a discontinuous fashion. Moreover, ZnT3 KO mice showed abnormality in trace fear conditioning and in fear extinction. By contrast, ZnT3 KO mice had normal anxiety. Thus, ZnT3 is involved in associative fear memory and extinction, but not in innate fear, consistent with the role of synaptic zinc in amygdala synaptic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号