首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Monosynaptic Hoffman reflexes (H reflexes) were recorded from the soleus muscle during the response latency of a warned reaction time (RT) task that required plantarflexion of the foot. The task was done under four conditions of predictability of the response signal (RS), created by the factorial combination of foreperiod duration (1 and 4 s) and variability (fixed and variable). RT varied systematically with RS predictability and was facilitated in conditions that favored prediction of the RS. The response latency was divided into two successive phases by the onset of reflex augmentation: a premotor phase of constant reflex amplitude and a succeeding motor phase marked by progressively increasing reflex amplitude. Reflex augmentation during the motor phase was coupled more closely to the imminent movement than to the preceding signal to respond. The duration of the premotor phase was unaffected by RS predictability, but the duration of the motor phase (like RT) was shorter when the RS was more predictable. The maximum H reflex amplitude reached during the motor phase was greater when the RS was more predictable. The tonic level of H reflex amplitude during the premotor phase was greater in conditions that made prediction of the RS difficult. A second experiment showed that this difference was present throughout the foreperiod.

These results suggest that conditions that favor prediction of the RS enhance motor preparation. Changes in motor preparation (which affect RT) affect the processes underlying reflex augmentation in the motor phase. Enhanced preparation may allow more efficient organization of the descending commands to move, causing higher levels of spinal excitability to be reached in a briefer time. The higher tonic reflex amplitudes in the premotor phase and throughout the preceding foreperiod, in conditions that make prediction of the RS difficult, appear to reflect heightened general arousal.  相似文献   

2.
《Acta psychologica》2013,142(3):343-348
It is well established that reflexes are highly adaptive, as they depend both on our intention and on the active state of the muscles. Reflex gains change dynamically during actions such as walking and running, with the gain of cutaneous reflexes being increased at the end of the stance phase but decreased at the end of the swing phase in the tibialis anterior (TA) muscle. Reflex gains can even change during the mere observation of an action. The mechanisms and functions of such modulations are unclear. It has been suggested that the changed reflex gains prevent the actual performance of actions that we see. However, the modulation of reflexes in response to seeing an action has never been reproduced for the active execution of such actions. In the present study, medium-latency cutaneous reflexes from the TA muscle, of which the activity and reflexes during walking are well known, were measured in human subjects. The results show that the gain changes of the medium-latency responses of the TA are the same as during active walking. We conclude that reflexes do not represent an inhibitory mechanism that prevents motor output during action observation. Instead, our findings provide evidence that even the peripheral spinal motor system is actively involved in the motor resonance processes, without evoking any measurable motor responses.  相似文献   

3.
The role played by reflex pathways in the production of movement has been a significant issue for motor control theorists interested in a wide variety of motor behaviors. From studies of locomotion and chewing, it appears that gains in reflex pathways can be altered so that activity in these pathways does not produce destabilizing responses during movement. In speech production, recent experimental evidence has been interpreted to suggest that autogenetic lip reflexes (perioral reflexes) are suppressed during sustained phonation or speech production. The present study was conducted to assess the effects of phonation, direction of movement, and ongoing speech production on reflex responses of lip muscles. The present results suggest, in contrast to earlier work, that this reflex pathway is not suppressed or absent because the amplitude of the observed response depends upon the activation levels of the various muscles of the lower lip and, therefore, indirectly on the nature of the gesture the subject is instructed to produce.  相似文献   

4.
Monosynaptic Hoffman reflexes (H reflexes) were recorded from the soleus muscle during the response latency of a warned reaction time (RT) task that required plantarflexion of the foot. The task was done under four conditions of predictability of the response signal (RS), created by the factorial combination of foreperiod duration (1 and 4 s) and variability (fixed and variable). RT varied systematically with RS predictability and was facilitated in conditions that favored prediction of the RS. The response latency was divided into two successive phases by the onset of reflex augmentation: a premotor phase of constant reflex amplitude and a succeeding motor phase marked by progressively increasing reflex amplitude. Reflex augmentation during the motor phase was coupled more closely to the imminent movement than to the preceding signal to respond. The duration of the premotor phase was unaffected by RS predictability, but the duration of the motor phase (like RT) was shorter when the RS was more predictable. The maximum H reflex amplitude reached during the motor phase was greater when the RS was more predictable. The tonic level of H reflex amplitude during the premotor phase was greater in conditions that made prediction of the RS difficult. A second experiment showed that this difference was present throughout the foreperiod. These results suggest that conditions that favor prediction of the RS enhance motor preparation. changes in motor preparation (which affect RT) affect the processes underlying reflex amplitudes in the premotor phase and throughout the preceding foreperiod, in conditions that make prediction of the RS difficult, appear to reflect heightened general arousal.  相似文献   

5.
Stretch reflexes play a vital role in fine-tuning movements and in automatically maintaining posture. This article briefly reviews the operation of the stretch reflex in the human masticatory system. The conventional approach of stretching muscles in an open-loop manner has yielded much valuable information on the operation of this reflex. In particular, it has revealed that stretching the jaw-closing muscles evokes a reflex response with two major components. The short-latency reflex is favoured when stretches are brisk, but slower stretches evoke an additional long-latency component. In the hand muscles, the long-latency response is transcortical: in the masticatory muscles, it is not. In addition to its role in servo-control of muscle length during chewing, the stretch reflex in the jaw-closing muscles maintains the vertical position of the mandible during vigorous head movements such as those that occur during running, jumping, hopping and other vigorous whole-body movements in which the head moves briskly up and down. This is an interesting model system in which to investigate stretch reflexes with natural stimuli under unrestrained, physiological conditions.  相似文献   

6.
The role played by reflex pathways in the production of movement has been a significant issue for motor control theorists interested in a wide variety of motor behaviors. From studies of locomotion and chewing, it appears that gains in reflex pathways can be altered so that activity in these pathways does not produce destabilizing responses during movement. In speech production, recent experimental evidence has been interpreted to suggest that autogenetic lip reflexes (perioral reflexes) are suppressed during sustained phonation or speech production. The present study was conducted to assess the effects of phonation, direction of movement, and ongoing speech production on reflex responses of lip muscles. The present results suggest, in contrast to earlier work, that this reflex pathway is not suppressed during phonation or speech. However, the response may appear to be suppressed or absent because the amplitude of the observed response depends upon the activation levels of the various muscles of the lower lip and, therefore, indirectly on the nature of the gesture the subject is instructed to produce.  相似文献   

7.
Monosynaptic and polysynaptic spinal level reflexes in the leg muscles of infants show significant dispersion across muscles, high variability, and no change in response patterns over the first 10 months. Here we tested the hypothesized relation between early walking experience and the tuning of these responses in three primary gait muscles of participants in four subgroups: cruisers (n = 7) and toddlers with one (n = 5), two (n = 5), or three (n = 5) months of walking experience. Reflex responses in multiple Ia pathways – tendon reflex (T-reflex), vibration-induced inhibition of the T-reflex (VIM-T-reflex), and tonic vibration-induced reflex (VIR), were elicited by mechanical stimuli applied to the distal tendons of the quadriceps, gastrocnemius-soleus, and tibialis anterior of both legs. Walking skill was assessed via a GAITRite mat. Generally, walking experience seemed to be related to slowly emerging improvements and, depending on muscle tested and pathway, progress was quite varied. Amplitude and latency of reflex responses were more clearly impacted by age or leg length while the ratio or distribution pattern of reflex response among antagonist pairs of muscles was impacted by walking experience and skill. As walking experience increased, the ratio of reflex responses tended to increase for the stimulated and decrease for the antagonist reflex loops with distribution of the pattern shifting gradually toward a single type of reflex response in all tested muscles. The very slow tuning of these reflexes may underlie the many missteps and falls reported to occur during early walking and suggest that subsequent studies should continue to follow the developmental trajectory through the first year of walking experience.  相似文献   

8.
Reduced stability while standing typically decreases the soleus muscle Hoffmann (H-) reflex amplitude, purportedly to prevent the Ia afferent signal from excessively activating spinal motor neurons during the unstable stance. H-reflex measures, however, by excluding the spindle do not reflect the actual effect of the Ia pathway (i.e. the combined effects of spindle sensitivity and Ia presynaptic inhibition) on motor neuron activation, as tendon tap reflex measures can. But the effect of stance stability on soleus muscle tendon tap reflex amplitude is largely unknown. This study examined 30 young adults (mean(s), 21(2) years) as they stood in a wide stable stance position and an unstable tandem stance with a reduced base of support. Standing body sway, the amplitude of the soleus muscle tendon tap reflex, background EMG and tap force were measured in both stances. A repeated measured design t-test was calculated for each variable. Most subjects (69%) decreased tendon tap reflex amplitude when in the tandem stance position (mean decrease 11.6%), compared to the wide stance (wide stance 0.248(0.124) mV, tandem stance 0.219(0.119) mV, p < 0.05, Cohen’s d = 0.24 small) with no significant differences in background soleus and tibialis anterior EMG, and tap force across the stances. There was no relationship between the modulation of the tendon tap reflex amplitude across the stances and standing body sway in the tandem stance. Results support the idea that for most subjects examined, during a less stable stance the Ia excitation of motor neurons is decreased, likely by presynaptic inhibition, thereby avoiding potential instability in the reflex loop or saturating the reflex pathway and possibly interfering with descending control of the involved spinal motor neurons.  相似文献   

9.
The acoustic startle and trigeminal blink reflexes share the same motor output. Since caffeine has been shown to augment the startle reflex, it was proposed that caffeine would also increase the trigeminal blink reflex. In 6 humans, the effects of caffeine (100 mg) on the trigeminal blink reflex were investigated. Reflex blinks were elicited by stimulation of the supraorbital branch of the trigeminal nerve. Following ingestion of caffeinated coffee, reflex blinks increased in amplitude and duration and occurred at a shorter latency than reflex blinks following ingestion of decaffeinated coffee. Since the blink reflex is a brainstem reflex, these results suggest that the psychomotor effects of caffeine facilitate brainstem processing.  相似文献   

10.
The authors aimed to calculate and compare cortical relay time (CRT) between intrinsic hand muscles and between homonymous muscles of dominant and nondominant hands. The participants comprised 22 healthy volunteers. The CRT for long-latency reflexes (LLRs) was calculated by subtracting the peak latency of somatosensory evoked potentials of component N20 and the onset latency of motor evoked potentials from the onset latency of LLRs. CRT was significantly shorter for the first dorsal interosseous muscle than for the abductor pollicis brevis muscle, regardless of hand dominance. CRT for the abductor pollicis brevis muscle was significantly shorter in the dominant hand than in the nondominant hand. Evaluation of CRT for intrinsic muscles might be beneficial in the understanding of individuated finger functions.  相似文献   

11.
Anger may have greater effects on chronic pain severity than other negative emotions and may do so by increasing muscle tension near the site of injury (symptom-specific reactivity). For patients with chronic low back pain (CLBP), relevant muscles are lower paraspinals (LP). Ninety-four CLBP patients and 79 controls underwent anger and sadness recall interviews. EMG and cardiovascular activity were recorded. Patients exhibited greater LP tension increases during anger and slower recovery than controls. Only patients showed greater LP reactivity during anger than sadness. For both groups, trapezius reactivity during anger and sadness did not differ. LP reactivity to anger correlated with everyday pain severity for patients. Anger-induced symptom-specific LP reactivity may be linked to chronic pain aggravation among CLBP patients.  相似文献   

12.
The aim of this study was to examine the automatic recruitment of the deep abdominal muscles during a unilateral simulated weight-bearing task by elite Australian Rules football (AFL) players with and without low back pain (LBP). An observational cross-sectional study was conducted using ultrasound imaging to measure the thickness of the internal oblique (IO) and transversus abdominis (TrA) muscles. Thirty-seven elite male AFL players participated. Repeated measures factors included 'force level' (rest, 25% and 45% of body weight), 'leg' (dominant or non-dominant kicking leg) and 'side' (ultrasound side ipsilateral or contralateral to the leg used for the weight-bearing task). The dependent variables were thickness of the IO and TrA muscles. The results of this study showed that thickness of the IO (p<.0001) and TrA (p<.0001) muscles increased in response to 'force level'. During the task, the thickness of the IO muscle on the contralateral side of the trunk relative to the leg being tested, increased more in participants with current LBP (p=.034). This pattern was more distinct on the non-dominant kicking leg. Altered abdominal muscle recruitment in elite athletes with low back pain may be an attempt by the central nervous system (CNS) to compensate for inadequate lumbo-pelvic stability.  相似文献   

13.
Automated movements adjusting postural control may be hampered during musculoskeletal pain leaving a risk of incomplete control of balance. This study investigated the effect of experimental muscle pain on anticipatory postural adjustments by reaction task movements. While standing, nine healthy males performed two reaction time tasks (shoulder flexion of dominant side and bilateral heel lift) before, during and after experimental muscle pain. On two different days experimental pain was induced in the m. vastus medialis (VM) or the m. tibialis anterior (TA) of the dominant side by injections of hypertonic saline (1 ml, 5.8%). Isotonic saline (1 ml, 0.9%) was used as control injection. Electromyography (EMG) was recorded from 13 muscles. EMG onset, EMG amplitude, and kinematic parameters (shoulder and ankle joint) were extracted. During shoulder flexion and VM pain the onset of the ipsilateral biceps femoris was significantly faster than baseline and post injection sessions. During heels lift in the VM and TA pain conditions the onset of the contralateral TA was significantly faster than baseline and post injection sessions in bilateral side. VM pain significantly reduced m. quadriceps femoris activity and TA pain significantly reduced ipsilateral VM activity and TA activity during bilateral heel lift. The EMG reaction time was delayed in bilateral soleus muscles during heels lift with VM and TA pain. The faster onset of postural muscle activity during anticipatory postural adjustments may suggest a compensatory function to maintain postural control whereas the reduced postural muscle activity during APAs may indicate a pain adaptation strategy to avoid secondary damage.  相似文献   

14.
Previous research has proposed that spinal reflex modulation may mediate anxiety-related changes in postural control. This study investigated how soleus H-reflex amplitude was influenced by standing at heights that induced different levels of anxiety. H-reflexes were elicited in 15 participants standing at the center and edge of a platform raised from a low to a high height (with and without vision). Increased skin conductance confirmed the anxiety effect of elevated surface heights. When standing at the edge of the platform with vision, H-reflex amplitude was attenuated in the high compared to low height condition. Changes in background muscle activity could not explain observed H-reflex changes, suggesting the potential involvement of pre-synaptic inhibition or fusimotor drive on anxiety-related changes in reflex modulation. This study reveals that healthy participants reduce spinal reflex excitability in the presence of increased postural anxiety and a postural threat imposed by standing at the edge of a raised platform. These findings have implications for understanding control of standing balance in individuals with postural instability and/or fear of falling, such as the elderly or stroke.  相似文献   

15.
The analysis of spinal and brainstem reflexes has been shown to be a useful method of quantifying the various inputs to motoneuron pools involved in voluntary motor control. This work is selectively reviewed as a background to a discussion of the role of the perioral reflex in lip motor control for speech. Data on the sensorimotor innervation of the lips and the static and dynamic properties of the perioral reflex are presented in support of the notions that (1) perioral reflex analysis provides a viable technique for analyzing brainstem excitability changes underlying lip muscle contraction for speech, and (2) the perioral reflex loop is an important functional element in lip motor control for speech.  相似文献   

16.
Retention of a classically conditioned reflex response in spinal cat   总被引:1,自引:0,他引:1  
Retention of classically conditioned flexion reflex facilitation was examined in unanesthetized, decerebrate, acute spinal cats. Flexion reflex facilitation, recorded from the tibialis anterior muscle, was obtained by pairing saphenous nerve stimulation (the conditioned stimulus) with superficial peroneal nerve stimulation (the unconditioned stimulus). The flexion reflex declined in control animals receiving the same number of nerve stimuli over the same time span, but in an explicitly unpaired sequence. To investigate retention, conditioned stimuli were presented at 5-min intervals following acquisition for a 2 1/2-h period. During this time a significant difference between conditioning and control groups was maintained even to the last trial, with no indication that the difference was subsiding over time. The results support the possibility that a classical conditioning paradigm applied to the spinal cord can induce alterations in spinal reflexes of long duration. Furthermore, the results appear to rule out post-tetanic potentiation as a mechanism producing the observed long-term effects.  相似文献   

17.
Back pain is a common pain syndrome in the general population. The most common cause is lumbar disc disease and only rarely bony degenerative changes of the spine. Other causes of lumbar radiculopathy include local lesions. Inflammatory changes or meningeal carcinomatosis may also lead to lumbar nerve root damage. With pronounced clinical symptoms, motor deficits of the associated muscles can occur, including weakening of muscle reflexes. In addition to thorough education of the patient about the origin, likely duration, and treatment of the disease, a combination of physical therapy and pharmacotherapy is the basis for successful treatment of lumbar radiculopathy. In cases of severe paralysis, bladder and rectal paralysis, and corresponding compression of nerves, urgent spinal surgery is inevitable.  相似文献   

18.
Understanding mechanisms of fatigue of the trunk extensors is important because fatigue is a major factor in predicting incidence of low back pain, but few studies have examined trunk extensor fatigue muscles using differing load types and measured the amplitude and frequency domain of the electromyographic signal to explain these differences. Sixteen healthy participants performed position- and force-matching fatigue tasks in a modified Sørensen test position. Time to task failure was significantly longer during the position-matching task compared to force-matching task (58.3 ± 6.6 min vs. 36.1 ± 5.4 min). This finding is the opposite of that commonly reported for the appendicular muscle, but the mean power frequency shifts and muscle activation patterns of the trunk and hip extensors did not explain this difference. The mean power frequency shifts and muscle activation patterns of the trunk and hip extensors did not explain this difference. The greater time to task failure during the position-matching task may reflect adaptation of the trunk extensor muscles to optimize maintaining specific joint angles more so than specific loads.  相似文献   

19.
Our 51-year old patient developed low back pain and an increase of tonus mainly in the left limb and trunk muscles. Microscopic examination of the muscles and electronmicroscopic examination of the sural nerve and that of the gastronemic muscle did not show any specific deviation. On the basis of spontaneous activity observed during EMG examination, protracted motor activity of great amplitude when moved passively, as well as characteristic clinical symptoms and the disease process Stiff-man syndrome was diagnosed. Considering literature data, we tried applying diazepam (Seduxen and Rivotril)-presumably increasing the praesynaptic inhibition and affecting the reticular system of the brain stem-, as well as GABA medicaments (Lioresal and Depakine) increasing synaptic transport. By giving Seduxen, Rivotril and Baclofen simultaneously a lasting remission of symptoms could be reached. Applying Depakine in combination with the above medicines proved ineffective, presumably because of synergetic side effects.  相似文献   

20.
PurposeThe aim of this study was to examine control strategies among synergistic muscles after fatigue of a single muscle. It was hypothesized that the compensating mechanism is specific for each fatigued muscle.MethodsThe soleus (SOL), gastrocnemius lateralis (GL) and medialis (GM) were fatigued in separate sessions on different days. In each experiment, subjects (n = 11) performed maximal voluntary contractions prior to and after fatiguing a single muscle (SOL, GL or GM) while the voluntary muscle activity and torque were measured. Additionally, the maximal single twitch torque of the plantarflexors and the maximal spinal reflex activity (H-reflex) of the SOL, GL and GM were determined. Fatigue was evoked using neuromuscular stimulation.ResultsFollowing fatigue the single twitch torque decreased by −20.1%, −19.5%, and −23.0% when the SOL, GL, or GM, have been fatigued. The maximal voluntary torque did not decrease in any session but the synergistic voluntary muscle activity increased significantly. Moreover, we found no alterations in spinal reflex activity.ConclusionsIt is concluded that synergistic muscles compensate each other. Furthermore, it seems that self-compensating mechanism of the fatigued muscles occurred additionally. The force compensation does not depend on the function of the fatigued muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号