首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current evidence suggests that movement quality is impacted by postural adjustments made in advance of planned movement. The trunk inevitably plays a key role in these adjustments, by creating a stable foundation for limb movement. The purpose of this study was to examine anticipatory trunk muscle activity during functional tasks in children with and without developmental coordination disorder (DCD). Eleven children with DCD (age 7 to 14 years) and 11 age-matched, typically-developing children performed three tasks: kicking a ball, climbing stairs, and single leg balance. Surface electromyography (EMG) was used to examine the neuromuscular activity of bilateral transversus abdominis/internal oblique, external oblique and L3/4 erector spinae, as well as the right tibialis anterior and rectus femoris muscles. Onset latencies for each muscle were calculated relative to the onset of rectus femoris activity. In comparison to the children with DCD, the typically-developing children demonstrated earlier onsets for right tibialis anterior, bilateral external oblique, and right transversus abdominis/internal oblique muscles. These results suggest that anticipatory postural adjustments may be associated with movement problems in children with DCD, and that timing of both proximal and distal muscles should be considered when designing intervention programs for children with DCD.  相似文献   

2.
Coordination of intentional upper limb movement concurrent with supporting postural activity was investigated in adult males under varying task conditions. Seven subjects performed a 60 deg rapid elbow flexion (focal movement) to a target in movement times of 170, 195, or 220 ms while standing. Measurement of center of pressure via a force platform revealed that subjects adopted individual premovement postural preferences such that locus of center of pressure resided in one predominant quadrant of the foot. Each premovement postural preference was accompanied by one most common postural muscle onset sequence as indicated by bilateral EMG analysis of rectus femoris and biceps femoris. In addition, onset times for postural muscles exhibiting anticipatory postural activity occurred earlier relative to biceps branchii as focal movement velocity increased. The finding that each premovement postural condition was accompanied by one particular postural muscle onset sequence suggested that postural synergies were flexibly organized with respect to onset sequence.  相似文献   

3.
One purpose of the experiments reported here was to further clarify the effect of varying loads on postural adjustments. Another was to reevaluate whether or not the timing of electromyographic (EMG) activity in the postural muscle is preprogrammed. To accomplish these goals, we compared the effect of the presence or absence of prior knowledge of a load on the timing of EMG activity in the postural muscle (biceps femoris [BF]) with that in the focal muscle (anterior deltoid [AD]). Although the sequence of EMG activation was similar under conditions with and without a load, the timing of postural EMG activities (BFi, ipsilateral BF; BFc, contralateral BF) in associated postural adjustments was dependent on the force of arm movement, and the latencies of postural EMG activities (BFi-BFc) were dependent on the speed of arm movement. This indicates that EMG changes in the upper (focal muscle) and lower limbs (postural muscle) were triggered by different motor programs. Moreover, similar EMG activities were observed in postural muscles when the subject had advance knowledge of the presence or the absence of a load. Thus, this suggests that BFi may be centrally preprogrammed (anticipatory regulation) and BFc may be feedback regulated. Furthermore, environmental information may be a critical source of influence on those postural responses.  相似文献   

4.
One purpose of the experiments reported here was to further clarify the effect of varying loads on postural adjustments. Another was to reevaluate whether or not the timing of electromyographic (EMG) activity in the postural muscle is preprogrammed. To accomplish these goals, we compared the effect of the presence or absence of prior knowledge of a load on the timing of EMG activity in the postural muscle (biceps femoris [BF]) with that in the focal muscle (anterior deltoid [AD]). Although the sequence of EMG activation was similar under conditions with and without a load, the timing of postural EMG activities (BFi, ipsilateral BF; BFc, contralateral BF) in associated postural adjustments was dependent on the force of arm movement, and the latencies of postural EMG activities (BFi—BFc) were dependent on the speed of arm movement. This indicates that EMG changes in the upper (focal muscle) and lower limbs (postural muscle) were triggered by different motor programs. Moreover, similar EMG activities were observed in postural muscles when the subject had advance knowledge of the presence or the absence of a load. Thus, this suggests that BFi may be centrally preprogrammed (anticipatory regulation) and BFc may be feedback regulated. Furthermore, environmental information may be a critical source of influence on those postural responses.  相似文献   

5.
This study investigated the EMG characteristics and the kinematics of the trunk and lower extremity during the sit-to-stand (STS) task while wearing 1-, 4-, and 8-cm high-heeled shoes. We examined differences in the EMG data of the internal oblique, erector spinae, medial hamstring, and rectus femoris muscles during the STS task. The motion of the hip joint during an STS task was measured with a NorAngle Electrogoniometer System. Twelve young healthy women were recruited to this study. EMG characteristics and the hip joint angle were recorded during the performance of an STS task by subjects wearing high-heeled shoes of three different heel heights. The muscle onset time and EMG activity during this task were analyzed. In 8-cm high-heeled shoes, the onset time for the erector spinae muscle was significantly delayed, and the onset latency for the medial hamstring and the rectus femoris was significantly decreased. There was increased activity in the erector spinae and rectus femoris muscle during this task when wearing 8-cm high-heeled shoes. The initial hip flexion angle at the start point of the STS task did not differ among the 1-, 4-, and 8-cm heel-height conditions, but the trunk flexion angle, corresponding to the displacement between the peak hip flexion and initial hip flexion, was significantly larger in the 8-cm heel-height condition than in the 1- and 4-cm heel-height conditions. The findings suggest that excessive heel height has the potential to induce muscle imbalance during the STS task.  相似文献   

6.
During anti-phased locomotor tasks such as cycling or walking, hemiparetic phasing of muscle activity is characterized by inappropriate early onset of activity for some paretic muscles and prolonged activity in others. Pedaling with the paretic limb alone reduces inappropriate prolonged activity, suggesting a combined influence of contralesional voluntary commands and movement-related sensory feedback. Five different non-target leg movement state conditions were performed by 15 subjects post-stroke and 15 nonimpaired controls while they pedaled with the target leg and EMG was recorded bilaterally. Voluntary engagement of the non-lesioned motor system increased prolonged paretic vastus medialis (VM) activity and increased phase-advanced rectus femoris (RF) activity. We suggest bilateral descending commands are primarily responsible for the inappropriate activity in the paretic VM during anti-phase pedaling, and contribute to the dysfunctional motor output in the paretic RF. Findings from controls suggest that even an undamaged motor system can contribute to this phenomenon.  相似文献   

7.
The trunk muscle transversus abdominis (TrA) is thought to be controlled independently of the global trunk muscles. Methodological issues in the 1990s research such as unilateral electromyography and a limited range of arm movements justify a re-examination of this theory. The hypothesis tested is that TrA bilateral co-contraction is a typical muscle synergy during arm movement. The activity of 6 pairs of trunk and lower limb muscles was recorded using bilateral electromyography during anticipatory postural adjustments (APAs) associated with the arm movements. The integrated APA electromyographical signals were analyzed for muscle synergy using Principle Component Analysis. TrA does not typically bilaterally co-contract during arm movements (1 out of 6 participants did). APA muscle activity of all muscles during asymmetrical arm movements typically reflected a direction specific diagonal pattern incorporating a twisting motion to transfer energy from the ground up. This finding is not consistent with the hypothesis that TrA plays a unique role providing bilateral, feedforward, multidirectional stiffening of the spine. This has significant implications to the theories underlying the role of TrA in back pain and in the training of isolated bilateral co-contraction of TrA in the prophylaxis of back pain.  相似文献   

8.
This study investigated the influence of wearing unstable shoe construction (WUS) on compensatory postural adjustments (CPA) associated with external perturbations. Thirty-two subjects stood on a force platform resisting an anterior-posterior horizontal force applied to a pelvic belt via a cable, which was suddenly released. They stood under two conditions: barefoot and WUS. The electromyographic (EMG) activity of gastrocnemius medialis, tibialis anterior, rectus femoris, biceps femoris, rectus abdominis, and erector spinae muscles and the center of pressure (CoP) displacement were acquired to study CPA. The EMG signal was used to assess individual muscle activity and latency, antagonist co-activation and reciprocal activation at joint and muscle group levels. Compared to barefoot, WUS led to: (1) increased gastrocnemius medialis activity, (2) increased total agonist activity, (3) decreased antagonist co-activation at the ankle joint and muscle group levels, (4) increased reciprocal activation at the ankle joint and muscle group levels, and (5) decrease in all muscle latencies. No differences were observed in CoP displacement between conditions. These findings demonstrate that WUS led to a reorganization of the postural control system associated to improved performance of some components of postural control responses.  相似文献   

9.
The aim of this study was to examine postural control in children with cerebral palsy performing a bilateral shoulder flexion to grasp a ball from a sitting posture. The participants were 12 typically developing children (control) without cerebral palsy and 12 children with cerebral palsy (CP). We analyzed the effect of ball mass (1 kg and 0.18 kg), postural adjustment (anticipatory, APA, and compensatory, CPA), and groups (control and CP) on the electrical activity of shoulder and trunk muscles with surface electromyography (EMG). Greater mean iEMG was seen in CPA, with heavy ball, and for posterior trunk muscles (p < .05). The children with CP presented the highest EMG and level of co-activation (p < .05). Linear regression indicated a positive relationship between EMG and aging for the control group, whereas that relationship was negative for participants with CP. We suggest that the main postural control strategy in children is based on corrections after the beginning of the movement. The linear relationship between EMG and aging suggests that postural control development is affected by central nervous disease which may lead to an increase in muscle co-activation.  相似文献   

10.
PurposeThe aim of this study was to examine the effect of vision on anticipatory postural control (APA) responses in two groups of clinically diagnosed chronic low back pain patients, those with Posterior Pelvic Girdle pain and those with Non-Specific Low Back Pain compared to a matched group of healthy controls during the modified Trendelenburg task.MethodsSeventy-eight volunteer participants (60 females and 18 males) gave informed consent to take part in this study. 39 with confirmed LBP or PGP lasting longer than 12 weeks and 39 healthy matched controls performed 40 single leg lift tasks (hip flexion to 90° as quickly as possible) with their non-dominant lower limb. A force plate was used to determine the medial-lateral displacement of the center of pressure, and the initiation of weight shift; kinematics was used to determine initiation of leg lift; and electromyography was used to determine onset times from the external oblique (EO), internal oblique (IO) and lumbar multifidus (MF), gluteus maximus (GM) and biceps femoris (BF).ResultsThe PGP group showed significantly longer muscle onset latencies in the BF, EO MF with visual occlusion (F2,746 = 4.51, p < .0001).ConclusionThe muscle onset delays identified between the two LBP sub-groups suggests that pain may not be the primary factor in alteration of APA response. The PGP group show a greater reliance on vision which may signal impairment in multiple feedback channels.  相似文献   

11.
The aim of this study was to investigate anticipatory (APA), simultaneous (SPA) and compensatory (CPA) postural adjustments in individuals with and without chronic ankle instability (CAI) as they kicked a ball while standing in a single-leg stance on a stable and unstable surface. Electromyographic activity (EMG) of postural muscles and center of pressure (COP) displacements were calculated and their magnitudes analyzed during the postural adjustment intervals. Additionally, the COP area of sway was calculated over the duration of the whole task. The activities of postural muscles were also studied using principal component analysis (PCA) to identify between-group differences in patterns of muscle activation. The individuals with CAI showed reduced magnitude of EMG at the muscles around the ankle while around the hip the activity was increased. These were associated with a reduction in balance sway across the entire task, as compared with the control group. The PCA revealed that CAI participants assemble different sets of muscle activation to compensate for their ankle instability, primarily activating hip/spine muscles. These results set up potential investigations to examine whether balance control interventions enhance these adaptations or revert them to a normal pattern as well as if any of these changes proactively address recurrent ankle sprain conditions.  相似文献   

12.
神经肌肉下意识前馈与反馈控制的知觉线索效应   总被引:1,自引:0,他引:1  
张芷  王健 《心理学报》2014,46(1):50-57
为研究视觉和时间知觉线索对突发外部姿势干扰下中枢神经系统对动作肌肉和姿势肌肉预期姿势调节(APAs)和补偿姿势调节(CPAs)的影响, 本研究被试分别在视觉和时间线索引导下完成经典落球试验, 同步采集右侧动作肌肉肱二头肌和姿势肌肉腰部竖脊肌和腰部多裂肌的sEMG信号, 计算被检肌肉APAs发生率、预激活时间和CPAs反应强度。结果发现, 视觉线索可以引发动作肌肉和姿势肌肉APAs发生率明显增加, 预激活时间明显提前, 以及动作肌肉CPAs反应强度明显减小; 而时间线索主要引发动作肌肉预激活提前, 对姿势肌肉APAs和CPAs无明显影响。该结果表明, 视觉和时间引导线索对突发外部姿势干扰条件下人体姿势肌肉和动作肌肉的中枢运动控制具有不同的作用。视觉引导线索能够明显增加姿势肌肉和动作肌肉预激活发生率和提早预激活时间, 表现出明显的“视觉线索预激活优势现象”; 而时间引导线索主要引发动作肌肉预激活提前, 对姿势肌肉APAs和CPAs无明显影响。  相似文献   

13.
BackgroundPeople with low back pain exhibit altered postural coordination that has been suggested as a target for treatment, but heterogeneous presentation has rendered it difficult to identify appropriate candidates and protocols for such treatments. This study evaluated the associations of task-related and person-related factors with the effect of low back pain on anticipatory postural adjustments.MethodsThirteen subjects with and 13 without low back pain performed seated, rapid arm flexion in self-initiated and cued conditions. Mixed-model ANOVA were used to evaluate group and condition effects on APA onset latencies of trunk muscles, arm-raise velocity, and pre-movement cortical potentials. These measures were evaluated for correlation with pain ratings, Fear Avoidance Beliefs Questionnaire scores, and Modified Oswestry Questionnaire scores.FindingsDelayed postural adjustments of subjects with low back pain were greater in the cued condition than in the self-initiated condition. The group with low back pain exhibited larger-amplitude cortical potentials than the group without pain, but also significantly slower arm-raise velocities. With arm-raise velocity as a covariate, the effect of low back pain remained significant for the latencies of postural adjustments but not for cortical potentials. Latencies of the postural adjustments significantly correlated with Oswestry and Fear Avoidance Beliefs scores.InterpretationDelayed postural adjustments with low back pain appear to be influenced by cueing of movement, pain-related disability and fear of activity. These results highlight the importance of subject characteristics, task condition, and task performance when comparing across studies or when developing treatment of people with low back pain.  相似文献   

14.
The present study explored whether rapid stepping is influenced by the coordination of an arm pointing task. Nine participants were instructed to (a) point the index finger of the dominant arm towards a target from the standing posture, (b) initiate a rapid forward step with the contralateral leg, and (c) synchronize stepping and pointing (combined task). Force plate and ankle muscle electromyography (EMG) recordings were contrasted between (b) and (c). In the combined task, the arm acceleration trace most often peaked around foot-off, coinciding with a 15% increase in the forward acceleration of the center of gravity (CoG). Backward displacement of the center of foot pressure at foot-off, duration of anticipatory postural adjustments (APAs) and ankle muscle EMG activity remained unchanged. In contrast, durations of swing phase and whole step were reduced and step length was smaller in the combined task. A reduction in the swing phase was correlated with an increased CoG forward acceleration at foot-off. Changes in the biomechanics of step initiation during the combined task might be ascribed to the postural dynamics elicited by arm pointing, and not to a modulation of the step APAs programming.  相似文献   

15.
Abstract

Self-initiated postural adjustments commonly occur in daily life. To accessibly measure this type of dynamic balance, we developed a simple computer program to induce virtual perturbations and combined it with a commercially available balance board and portable EMG system to measure resulting self-initiated postural adjustments. When performing perturbed balance tests, safety harness with body weight support (BWS) is often used. However, influences of these harnesses on postural reactions are not well known. This study investigated the sensitivity of our assessment tool under different BWS conditions and muscle responses during postural adjustments following perturbation at different directions. Fifteen neurologically intact participants performed self-initiated postural adjustments under conditions with: (1) no harness; (2) harness with no BWS; and (3) harness with 10% BWS. Postural adjustment time and muscle activities of the lower leg were measured. We observed significant increases in postural adjustment time in the harness with no BWS condition and differneces in lower leg muscles response to virtual perturbation. Our findings suggest that the combination of our customized program with EMG is a sensitive and convenient tool to measure postural adjustments that approximate real-world scenarios. This method can be used with light body weight support to ensure safety without influencing muscle synergies.  相似文献   

16.
We examined the effects of anticipation certainty concerning which voluntary movement is required in response to a stimulus while standing on preparatory brain activity and anticipatory postural adjustments (APAs). Ten right-handed adults abducted their left or right arm rapidly in response to a visual imperative stimulus, based on the type of stimulus. A warning cue, which did or did not contain information about the side of arm abduction, was presented 2000ms before the imperative stimulus. Preparatory brain activity before arm abduction was quantified by the mean amplitude of the contingent negative variation 100ms before the imperative stimulus (late CNV amplitude). Compared with the low anticipation condition, in the high anticipation condition the following results were obtained only in the case of right arm abduction: (1) larger late CNV amplitude, (2) earlier postural muscle activities with respect to the focal muscle of arm abduction, and (3) smaller peak displacement of center of pressure during the abduction. These findings suggest that high anticipation of voluntary movement of dominant arm to a stimulus while standing influences preparatory brain activity before the movement, resulting in earlier APAs and thus smaller disturbance of postural equilibrium during the movement.  相似文献   

17.
The purpose of this study was to determine whether the type and direction of postural perturbation threat differentially affect anticipatory postural control. Healthy young adults stood on a force plate fixed to a translating platform and completed a series of rise-to-toes movements without (No Threat) and with (Threat) the potential of receiving a postural perturbation to either their feet (15 participants) or torso (16 participants). Each type of perturbation threat was presented along the anteroposterior (A-P) or mediolateral (M-L) axis. For each condition, the A-P center of pressure (COP) signal and tibialis anterior (TA) and soleus (SOL) electromyographical (EMG) recordings were used to quantify the anticipatory postural adjustment (APA). Results indicated that across both threat types and directions, postural threat induced a 40.2% greater TA activation (p < 0.001), a 18.5% greater backward COP displacement (p < 0.001) and a 23.9% greater backward COP velocity (p < 0.001), leading to larger and faster APAs than the No Threat condition. Subsequently, a 7.7% larger forward COP displacement (p = 0.001), a 20.4% greater forward COP velocity (p < 0.001) and 43.2% greater SOL activation (p = 0.009) were observed during the execution phase of the rise-to-toes for the Threat compared to the No Threat condition. Despite these threat effects, there were no differences in the magnitude or velocity of APAs between the threat directsion conditions. Since the type and direction of perturbation-induced postural threat had minimal differential effects on anticipatory postural control, these factors are unlikely to explain the discrepancy of previous findings.  相似文献   

18.
The predictability of perturbation magnitude plays an important role in control of standing posture. The aim of the study was to examine anticipatory (APAs) and compensatory (CPAs) postural adjustments in response to catching objects of uncertain mass. Twenty adults caught the same object with either light or heavy weight placed in it. Electromyographic activity of eight trunk and leg muscles, displacements of the center of pressure, and angular displacement of the shoulder joint were recorded and analyzed during the APAs and CPAs intervals. When the subjects experienced repeated catching of the object with the same weight, they estimated the object mass beforehand and generated APAs more precisely. When the object mass changed unpredictably, they generated APAs based on the most recent catch and needed four to six trials to optimize APAs and CPAs. The muscle co-contraction was a primary pattern for catching the object of uncertain mass. The results of the study suggest that catching the object of uncertain mass is a challenging task that involves co-contraction of postural muscles to maintain balance.  相似文献   

19.
ObjectivesThe present study aimed to clarify the mechanisms of postural control during standing in older adults and document the mechanisms of age-related motor control based on changes in muscle activities.MethodsA total of 26 healthy male adults (older adult group, ≥65–78 years: n = 16; younger adult group, 20–23 years: n = 10) participated in this study. Ground reaction force and kinematic data of the lower limbs (hip, knee, and ankle), and electromyographic data from 6 postural muscles on the right side were recorded and quantified for each motor phase during rapid voluntary center of pressure (COP) shift.ResultsAlthough hip strategy was more frequently observed in older adults than in young adults (56.3% vs. 20.0%), no muscle activity of hip agonists was observed in some (31.3%) older adults. Furthermore, older adults had a statistically significant delay in the inhibition of postural muscles during anticipatory postural adjustments (p < 0.05). After the onset of COP motion, the co-contraction time between agonists and antagonists was significantly prolonged in the older adults than in the younger adults (p < 0.05), and the reciprocal muscle pattern was unclear in the older adults. Prior to the termination of movement, agonist activity continued longer in the older adult group than in the younger adult group; that is, inhibition was insufficient in the older adult group.ConclusionA series of postural strategies during the voluntary movement task were altered in older adults, and this was significantly related not only with the activation but also the inhibition of postural muscles.  相似文献   

20.
The authors studied the development of postural adjustments associated with the initiation of gait in children by using kinematic and electromyographic (EMG) analysis. Participants (N = 28) included infants with 1-4 and 9-17 months of walking experience, children 4-5 years of age, and adults. Anticipatory postural adjustments (APA) were present in the youngest age groups, including a clear anticipatory lateral tilt of the pelvis and the stance leg, which enabled the child to unload the opposite leg shortly before its swing phase. An anticipatory activation of the hip abductor of the leg in stance phase prior to heel-off was found, suggesting pelvis stabilization. APA did not appear consistently until 4-5 years of age. A decrease in segmental oscillations occurred across the ages, indicating better control of intersegmental coordination in the frontal and sagittal planes during the postural phase of gait initiation. Young walkers presented APA involving movements of both the upper and the lower parts of the body, whereas, like adults, 4- to 5-year-olds were able to laterally shift only the pelvis and the stance leg. The oldest children and the adults also showed lower activation levels of hip and knee muscles but higher activation at the ankle level. Those kinematic and EMG results taken together suggest a clear developmental sequence from an en bloc operation of the body through an articulated operation with maturation, walking experience, or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号