首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of stimulus duration and spatial separation on the illusion of apparent motion in the auditory modality were examined. Two narrow-band noise sources (40 dB, A-weighted) were presented through speakers separated in space by 2.5°, 5°, or 100, centered about the subject’s midline. The duration of each stimulus was 5, 10, or 50 msec. On each trial, the sound pair was temporally separated by 1 of 10 interstimulus onset intervals (ISOIs): 0, 2, 4, 6, 8, 10, 15, 20, 50, or 70 msec. Five subjects were tested in nine trial blocks; each block represented a particular spatial-separation-duration combination. Within a trial block, each ISOI was presented 30 times each, in random order. Subjects were instructed to listen to the stimulus sequence and classify their perception of the sound into one of five categories: single sound, simultaneous sounds, continuous motion, broken motion, or successive sounds. Each subject was also required to identify the location of the first-occurring stimulus (left or right). The percentage of continuous-motion responses was significantly affected by the ISOI [F(9,36) = 5.67,p < .001], the duration × ISOI interaction [F(18,72) = 3.54,p < .0001], and the separation × duration × ISOI interaction [F(36,144) = 1.51,p < .05]. The results indicate that a minimum duration is required for the perception of auditory apparent motion. Little or no motion was reported at durations of 10 msec or less. At a duration of 50 msec, motion was reported most often for ISOIs of 20–50 msec. The effect of separation appeared to be limited to durations and-ISOIs during which little motion was perceived.  相似文献   

2.
The experiment examined the effects of movement time (MT) and distance on the timing of electromyographic (EMG) activity from an agonist and antagonist muscle during rapid, discrete elbow movements in the horizontal plane. According to impulse-timing theory (Wallace, 1981) MT, not distance moved, should have a pronounced effect on the timing of EMG activity (duration of initial agonist and antagonist burst and time to onset of initial antagonist burst). The levels of MT were 100 and 160 msec and the levels of distance were 27° and 45° of elbow flexion. In general support of impulse-timing theory, the results of the three EMG timing measures showed that MT had a more pronounced effect on these measures than distance. In addition, the timing of EMG activity in relation to total MT remained fairly consistent across the four MT-distance conditions.  相似文献   

3.
The effects of stimulus duration and spatial separation on the illusion of apparent motion in the auditory modality were examined. Two narrow-band noise sources (40 dB, A-weighted) were presented through speakers separated in space by 2.5 degrees, 5 degrees, or 10 degrees, centered about the subject's midline. The duration of each stimulus was 5, 10, or 50 msec. On each trial, the sound pair was temporally separated by 1 of 10 interstimulus onset intervals (ISOIs): 0, 2, 4, 6, 8, 10, 15, 20, 50, or 70 msec. Five subjects were tested in nine trial block; each block represented a particular spatial-separation-duration combination. Within a trial block, each ISOI was presented 30 times each, in random order. Subjects were instructed to listen to the stimulus sequence and classify their perception of the sound into one of five categories: single sound, simultaneous sounds, continuous motion, broken motion, or successive sounds. Each subject was also required to identify the location of the first-occurring stimulus (left or right). The percentage of continuous-motion responses was significantly affected by the ISOI [F(9,36) = 5.67, p less than .001], the duration x ISOI interaction [F(18,72) = 3.54, p less than .0001], and the separation x duration x ISOI interaction [F(36,144) = 1.51, p less than .05]. The results indicate that a minimum duration is required for the perception of auditory apparent motion. Little or no motion was reported at durations of 10 msec or less. At a duration of 50 msec, motion was reported most often for ISOIs of 20-50 msec.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The experiment examined the effects of movement time (MT) and distance on the timing at electromyographic (EMG) activity from an agonist and antagonist muscle during rapid, discrete elbow movements in the horizontal plane. According to impulse-timing theory (Wallace, 1981) MT, not distance moved, should have a pronounced effect on the timing of EMG activity (duration of initial agonist and antagonist burst and time to onset of initial antagonist burst). The levels of MT were 100 and 160 msec and the levels of distance were 27 degrees and 45 degrees of elbow flexion. In general support of impulse-timing theory, the results of the three EMG timing measures showed that MT had a more pronounced effect on these measures than distance. In addition, the timing of EMG activity in relation to total MT remained fairly consistent across the four MT-distance conditions.  相似文献   

5.
Conditions for the disappearance of long-range apparent movement were investigated. In an experiment on beta motion, critical interstimulus intervals (ISIs) of downward simultaneity thresholds for stimuli presented in continuous alternation were determined for exposure durations (EDs) varying from 3 to 160 msec. Each subject performed each test twice. Data were collected in three sessions, each for one of three angular separations (3°, 6°, and 12°) and the full set of EDs. The distribution of critical ISIs collapsed across subjects, EDs, and angular separations shows sharp maxima at regular distances within a range of 0–110 msec ISI. Significant or near-significant peaks were found at ISIs of 5, 9,22,27, 43, 55, and 107 msec. Although mean critical ISIs shifted with spatial separation, no essential shift of the main maxima occurred. Evidence of a periodic modulation with a period duration of 4.5 msec was obtained from the distributions of differences between critical ISIs of the first tests and their replications, which exhibit extremely low standard deviations (< 10 msec). These results agree well with previous analyses (Geissler, 1987, 1992) that led to a taxonomic model of quantal timing, briefly summarized in this paper. Further consequences are discussed and related to earlier developments (Geissler, 1991, 1992,1997).  相似文献   

6.
The effect of display movement on the ability of subjects to recognize alphabetic shapes tactually was investigated. The display consisted of a computer-controlled 8-by-6 array of small airjet stimulators that could be physically translated in a small circle by means of a mechanical linkage. The experimental parameters were the stimulus duration, the angular velocity of the display, and the amplitude of the rotation. Recognition accuracy increased with stimulus duration between 100 and 400 msec. For a rotation amplitude of 0.8 cm, a maximum in recognition accuracy occurred at a rotation velocity of 400 rpm, or 150 msec. per revolution. The optimum angular velocity appeared to decrease as the amplitude of rotation increased. From these results and certain related neurophysiological evidence, a hypothetical model is suggested which qualitatively can account for the data.  相似文献   

7.
The effect of display movement on the ability of subjects to rec ognize alphabetic shapes tactually was investigated. The display consisted of a computer-controlled 8-by-6 array of small airjet stimulators that could be physically translated in a small circle by means of a mechanical linkage. The experimental parameters were the stimulus duration, the angular velocity of the display, and the amplitude of the rotation. Recognition accuracy increased with stimulus duration between 100 and 400 msec. For a rotation amplitude of 0.8 cm, a maximum in recognition accuracy occurred at a rotation velocity of 400 rpm, or 150 msec. per revolution. The optimum angular velocity appeared to decrease as the amplitude of rotation increased. From these results and certain related neurophysiological evidence, a hypothetical model is suggested which qualitatively can account for the data.  相似文献   

8.
This study explored the extent to which rapid temporal processing and duration contribute to the right-ear advantage (REA) and presumably left-hemisphere processing for stop consonants and the lack of clear-cut laterality effects for vowels. Three sets of synthetic stimuli were constructed: consonant vowel stimuli [ba da ga bi di gi bu du gu] of 300 msec duration (full stimuli) and two shortened stimuli consisting either of a noise burst and 40-msec transitions (40-msec stimuli), or a noise burst and 20-msec transitions (20-msec stimuli). Stimuli were presented dichotically for consonant, vowel, and syllable identification. Results indicated a significant REA for consonants in the full and 40-msec conditions and a non-significant REA in the 20-msec condition. Nevertheless, the magnitude of laterality did not change across the three conditions. These results suggest that although transition information including duration contributes to lateralization for stop consonants, it is the presence of abrupt onsets which crucially determines lateralized processing. For vowels, there was a significant REA only in the full stimulus condition, and a significant decrement in the magnitude of the laterality effect in the two shortened stimulus conditions. These results suggest that for vowel perception, it is the nature of the acoustic cue used for phonetic identification and not duration that seems to be the critical determinant of lateralization effects.  相似文献   

9.
Ss were presented two stimuli of equal duration separated in time. The parrs of stimuli were vibrotactile, auditory, or visual. The Ss adjusted the time between the two stimuli to be equal to the duration of the first stimulus. The results show that for stimulus durations ranging from 100 to 1,200 msec, Ss set the tune between the two stimuli too long and by a constant amount. For vibrotactfle stimuli, the constant was 596 msec; for auditory stimuli, 657 msec; and for visual stimuli, 436 msec. Changing the intensity of the vibrotactile stimuli did not change the size of the constant error. When Ss were presented two tones with a burst of white noise between the tones and adjusted the duration of the white noise to be equal to the duration of the first tone, the white noise was not adjusted too long by a constant amount. The results suggest that there is a constant error in the perception of unfilled relative to filled temporal intervals.  相似文献   

10.
Two experiments investigated the properties of visual persistence as functions of spatial frequency, stimulus duration, and pattern-specific adaptation. In Experiment 1, increasing the duration of high spatial-frequency gratings from 50 to 500 msec decreased the duration of visual persistence produced by that grating to an asymptotic level. However, low-frequency gratings produced a constant estimate of visual persistence independent of presentation time. Also, spatial-frequency specific adaptation reduced the persistence of the high-frequency gratings to this asymptotic level, but the lower frequency persistence estimates already at this level were unaffected (Experiment 2). These findings are related to possible temporal properties of the sustained and transient visual systems.  相似文献   

11.
Using interstimulus intervals (ISIs) of 125, 250, and 500 msec in trace conditioning of the rabbit nictitating membrane response, the offset times and durations of conditioned responses (CRs) were collected along with onset and peak latencies. All measures were proportional to the ISI, but only onset and peak latencies conformed to the criterion for scalar timing. Regarding the CR's possible protective overlap of the unconditioned stimulus (US), CR duration increased with ISI, while the peak's alignment with the US declined. Implications for models of timing and CR adaptiveness are discussed.  相似文献   

12.
A detailed kinematic and electromyographic (EMG) analysis of single degree of freedom timing responses is reported to (a) determine the coherence of kinematic and EMG variability to the reduced timing error variability exhibited with amplitude increments within a given criterion movement time and (b) understand the temporal organization of various movement parameters in simple responses. The data reveal that the variability of kinematic (time to peak acceleration, duration of acceleration phase, time to peak deceleration) and EMG (duration of agonist burst, duration of antagonist burst, time to antagonist burst) timing parameters decreased with increments of average velocity in a manner consistent with the variable timing error. In addition, the coefficient of variation for peak acceleration, peak deceleration, and integrated EMG of the agonist burst followed the same trend. Increasing average movement velocity also led to decreases in premotor and motor reaction times. Overall, the findings suggest a strong coherence between the variability of response outcome, kinematic, and EMG parameters.  相似文献   

13.
The present study investigated the time course of visual information processing that is responsible for successful object change detection involving the configuration and shape of 3-D novel object parts. Using a one-shot change detection task, we manipulated stimulus and interstimulus mask durations (40&#x2014;500 msec). Experiments 1A and 1B showed no change detection advantage for configuration at very short (40-msec) stimulus durations, but the configural advantage did emerge with durations between 80 and 160 msec. In Experiment 2, we showed that, at shorter stimulus durations, the number of parts changing was the best predictor of change detection performance. Finally, in Experiment 3, with a stimulus duration of 160 msec, configuration change detection was found to be highly accurate for each of the mask durations tested, suggesting a fast processing speed for this kind of change information. However, switch and shape change detection reached peak levels of accuracy only when mask durations were increased to 160 and 320 msec, respectively. We conclude that, with very short stimulus exposures, successful object change detection depends primarily on quantitative measures of change. However, with longer stimulus exposures, the qualitative nature of the change becomes progressively more important, resulting in the well-known configural advantage for change detection.  相似文献   

14.
Subjects performed a repetitive manual tapping task, attempting to match a given rate of auditory stimulus pulses, first with the pulses audible (synchronization) and then with the pulses turned off (continuation). In different sessions, the interstimulus interval (ISI) was selected from the range 175 to 825 msec in steps of 25 msec, with different ISI values presented in a random order. Across this range of ISI conditions, interresponse intervals (IRIs) exhibited alternating positive bias (too slow) and negative bias (too fast). We interpret this pattern of bias in terms of a discrete, or categorical, timing mechanism in motor timing. Categorical time production can be viewed as extending our conception of the timekeeper in Wing's (Wing & Kristofferson, 1973a, 1973b) two-process model of motor timing and may be related to the system of multiple clocks proposed by Kristofferson (1980) to explain a categorical pattern of variability measures in duration discrimination.  相似文献   

15.
A detailed kinematic and electromyographic (EMG) analysis of single degree of freedom timing responses is reported to (a) determine the coherence of kinematic and EMG variability to the reduced timing error variability exhibited with amplitude increments within a given criterion movement time and (b) understand the temporal organization of various movement parameters in simple responses. The data reveal that the variability of kinematic (time to peak acceleration, duration of acceleration phase, time to peak deceleration) and EMG (duration of agonist burst, duration of antagonist burst, time to antagonist burst) timing parameters decreased with increments of average velocity in a manner consistent with the variable timing error. In addition, the coefficient of variation for peak acceleration, peak deceleration, and integrated EMG of the agonist burst followed the same trend. Increasing average movement velocity also led to decreases in premotor and motor reaction times. Overall, the findings suggest a strong coherence between the variability of response outcome, kinematic, and EMG parameters.  相似文献   

16.
The best available estimates indicate that the average minimum latency of saccadic eye movements (175-200 msec) approaches the mean duration of fixations in reading (200-250 msec). This fact presents a problem for models of reading which assume that an eye movement is initiated only after substantial information is processed on a fixation. Three experiments are reported that support earlier estimates of saccadic latency; the experiments were conducted under conditions in which the length of measured latencies could not reflect a motoric refractory period, spatial uncertainty, or temporal uncertainty.  相似文献   

17.
Subjects performed a repetitive manual tapping task, attempting to match a given rate of auditory stimulus pulses, first with the pulses audible (synchronization) and then with the pulses turned off (continuation). In different sessions, the interstimulus interval (ISI) was selected from the range 175 to 825 msec in steps of 25 msec, with different ISI values presented in a random order. Across this range of ISI conditions, interresponse intervals (IRIs) exhibited alternating positive bias (too slow) and negative bias (too fast). We interpret this pattern of bias in terms of a discrete, or categorical, timing mechanism in motor timing. Categorical time production can be viewed as extending our conception of the timekeeper in Wing’s (Wing’ & Kristofferson, 1973a, 1973b) two-process model of motor timing and may be related to the system of multiple clocks proposed by Kristofferson (1980) to explain a categorical pattern of variability measures in duration discrimination.  相似文献   

18.
Frequency-discrimination thresholds (FDTs) for 1-kHz tone pips with durations of 40, 100, and 200 msec were measured in the left and right ears of 10 normal-hearing listeners, before and after six 2-h frequency-discrimination training sessions involving, exclusively, the 200-msec duration and the right ear. In the trained ear, highly significant improvements in FDTs were observed at all durations. Further inspection of the data suggested complete generalization between 200 and 100 msec, but not at 40 msec. Posttraining FDTs were not found to differ between the two ears for the two untrained durations, but proved significantly smaller in the right (trained) than in the left (untrained) ear at the trained (200-msec) duration only. A control experiment involving 10 additional subjects allowed us to establish the absence of intrinsic differences in pretraining FDTs between the right and left ears. Overall, these findings indicate that frequency-discrimination learning generalizes widely across stimulus durations and across ears, but that part of the improvement is specific to the range of durations and to the ear used in training.  相似文献   

19.
van der H eijden A. H. C. Note on simultaneous discrimination of visual attributes. Scand. J. Psychol ., 1972, 13 , 71–72.—A tachistoscopically presented stimulus, provided it is above threshold, results in a visual image with a minimum duration of about 250 msec. In experiments on visual information processing, therefore, the results must be interpreted in terms of 'effective stimulus duration' (exposure time and duration of visual image) rather than exposure time alone.  相似文献   

20.
In tasks where subjects are required to tap in synchrony to a sequence of evenly spaced uniform auditory stimuli (a metronome), tap onsets typically tend to anticipate the metronome's stimulus onsets. We investigated this phenomenon, called “negative asynchrony”, as a function of (1) the duration of the stimuli (1 or 2, 50, 100, and 300 msec), (2) the rise time of the stimuli (0%, 40%, and 80% of stimulus duration), and (3) the interstimulus onset interval duration (500, 700, and 900 msec). The results from three experiments with 28 different subjects showed a significant reduction of the negative asynchrony with longer stimulus durations, and the reduction was not significantly affected by the tempo of the stimulus sequence. Also, a prolongation of the rise time of the stimuli caused an analogous reduction of the negative asynchrony. Findings were taken to suggest that subjects use the perceptual centre rather than physical onset of stimulus as the cue with which to synchronize  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号