首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Head-related transfer functions for differently centered narrow noise bands were obtained on 6 subjects. Derived from these measurements were covert peak areas (CPAs), defined as the spatial constellation of loudspeakers that generates maximal sound pressure at the entrance of the ear canal for specific bands of frequency. On the basis of previous data, we proposed that different frequency bands served as important spectral cues for monaural localization of sounds from different loci and that location judgments were directed toward the CPAs associated with the different bands. In the first study, the stimuli were bandpass filtered so that they contained only those frequencies whose associated CPAs occupied either the monaural listener’s “upper” or “lower” spatial regions. Loudspeakers, separated by 15°, were stationed in the left hemifield, ranging from 0° to 180° azimuth and ?45° to 60° elevation. Subjects reported the loudspeaker from which the sound appeared to originate. Judgments of the sound’s elevation were in general accord with the CPAs associated with the different frequency segments. In the second study, monaural localization tests were administered in which different 2.0-kHz-wide frequency bands linked with specific CPAs were notch filtered from a 3.5-kHz highpass noise band. For the control condition, the highpass noise was unfiltered. The data demonstrated that filtering a frequency segment linked with specific CPAs resulted in significantly fewer location responses directed toward that particular spatial region. These results demonstrate in greater detail the relation between the directional filtering properties of the pinna and monaural localization of sound.  相似文献   

2.
Head-related transfer functions for differently centered narrow noise bands were obtained on 6 subjects. Derived from these measurements were covert peak areas (CPAs), defined as the spatial constellation of loudspeakers that generates maximal sound pressure at the entrance of the ear canal for specific bands of frequency. On the basis of previous data, we proposed that different frequency bands served as important spectral cues for monaural localization of sounds from different loci and that location judgments were directed toward the CPAs associated with the different bands. In the first study, the stimuli were bandpass filtered so that they contained only those frequencies whose associated CPAs occupied either the monaural listener's "upper" or "lower" spatial regions. Loudspeakers, separated by 15 degrees, were stationed in the left hemifield, ranging from 0 degree to 180 degrees azimuth and -45 degrees to 60 degrees elevation. Subjects reported the loudspeaker from which the sound appeared to originate. Judgments of the sound's elevation were in general accord with the CPAs associated with the different frequency segments. In the second study, monaural localization tests were administered in which different 2.0-kHz-wide frequency bands linked with specific CPAs were notch filtered from a 3.5-kHz highpass noise band. For the control condition, the highpass noise was unfiltered. The data demonstrated that filtering a frequency segment linked with specific CPAs resulted in significantly fewer location responses directed toward that particular spatial region. These results demonstrate in greater detail the relation between the directional filtering properties of the pinna and monaural localization of sound.  相似文献   

3.
Six subjects located, monaurally, 1.0-kHz-wide noise bursts whose source originated on the side of the functioning ear and whose center frequency ranged from 4.0 through 9.0 kHz (Part 1). Irrespective of their actual locations, the stimuli appeared to migrate from the frontal sector of the arc toward the side as the center frequency was increased above 4.0 kHz. For some subjects, the sounds appeared again in front at the higher center frequencies. Comparable data were obtained with noise bursts 2.0 kHz in width. We referred to these constellations of location judgments, influenced by the frequency composition of the stimuli, as spatial referent maps. In Part 2, we measured, by means of a miniature microphone placed at the entrance of the external ear canal, the pinna amplification function for these same stimuli emanating from the same locations. The results showed a positive relation between the apparent location of noise bursts centered at 6.0 kHz and above and the relative amplification provided by the pinna. Localization performances by two subjects, chosen on the basis of their noncorresponding spatial referent maps, were examined for stimuli of wider bandwidths IPart 3). Their proficiency differed markedly from one another, which we accounted for in terms of different spatial referent maps that were associated with differences in the pinna amplification function.  相似文献   

4.
The ability of listeners, deprived of prominent interaural time and intensity cues, to locate noise bands differing in width was investigated. To minimize binaural cues, we placed the sound source at various positions in the median sagittal plane. To eliminate binaural cues, we occluded one ear. The stimuli consisted of broadband noise and bands of noise centered at 8.0 kHz. The width of the latter ranged from 1.0 to 6.0 kHz. The results from seven listeners showed that localization proficiency for sounds in the median sagittal plane decreased with decreases in bandwidth for both binaural and monaural listening conditions. This function was less orderly for monaural localization of horizontally positioned sounds. Another consequence of a reduction in bandwidth was an increasing tendency of listeners to select certain loudspeakers over others as the source of the sound. A previous finding showing that localization of sound in the median sagittal plane is more accurate when listening binaurally rather than monaurally was confirmed.  相似文献   

5.
An extensive series of behavioral tests was carried out to determine what region, or regions, of the sound spectrum were critical for locating sounds monaurally in the horizontal plane. Seven subjects were requested to locate narrow bands of noise centered at different frequencies, combinations of these noise bands, low-pass, high-pass, and broadband noise. As observed in an earlier study, increasing bandwidth did not necessarily lead to improved localization performance until the band became broad, including, for example, all frequencies above 4.0 kHz. What seems to be happening is that listeners perceive narrow bands of noise originating from restricted places in the horizontal plane which may differ one from another depending on the frequency composition of the stimulus. In several instances, if two noise bands were presented simultaneously, the resulting stimulus was located with reasonable accuracy provided each component, when presented singly, was perceived as emanating from clearly separate azimuthal positions. If, however, two noise bands, which were perceived to originate from approximately the same azimuthal position when presented singly, were now presented simultaneously, the resulting stimulus still was perceived to originate from the same region of the horizontal plane. This, then, is a case where augmenting the spectral content of the stimulus does not bring about improved performance. We suggest that the expression of judgmental biases in the apparent location of a band of noise may prove useful for understanding why some stimuli of specified width and center frequency are localizable while others are not.  相似文献   

6.
Listeners, whose right ears were blocked, located low-intensity sounds originating from loudspeakers placed 15 deg apart along the horizontal plane on the side of the open, or functioning, ear. In Experiment 1, the stimuli consisted of noise bursts, 1.0 kHz wide and centered at 4.0 through 14.0 kHz in steps of .5 kHz. We found that the apparent location of the noise bursts was governed by their frequency composition. Specifically, as the center frequency was increased from 4.0 to about 8.0 kHz, the sound appeared to move away from the frontal sector and toward the side. This migration pattern of the apparent sound source was observed again when the center frequency was increased from 8.0 to about 12.0 kHz. Then, with center frequencies of 13.0 and 14.0 kHz, the sound appeared once more in front. We referred to this relation between frequency composition and apparent location in terms of spatial referent maps. In Experiment 2, we showed that localization was more proficient if the frequency content of the stimulus served to connect adjacent spatial referent maps rather than falling within a single map. By these means, we have further elucidated the spectral cues utilized in monaural localization of sound in the horizontal plane.  相似文献   

7.
The effect of a background sound on the auditory localization of a single sound source was examined. Nine loudspeakers were arranged crosswise in the horizontal and the median vertical plane. They ranged from -20 degrees to +20 degrees, with the center loudspeaker at 0 degree azimuth and elevation. Using vertical and horizontal centimeter scales, listeners verbally estimated the position of a 500-ms broadband noise stimulus being presented at the same time as a 2 s background sound, emitted by one of the four outer loudspeakers. When the background sound consisted of continuous broadband noise, listeners consistently shifted the apparent target positions away from the background sound locations. This auditory contrast effect, which is consistent with earlier findings, equally occurred in both planes. But when the background sound was changed to a pulse train of noise bursts, the contrast effect decreased in the horizontal plane and increased in the vertical plane. This discrepancy might be due to general differences in the processing of interaural and spectral localization information.  相似文献   

8.
Listeners were requested to locate sounds originating in the median sagittal plane (MSP). The stimuli, 75-Msec pulses, were repeated at a rate of 200 times/sec and were filtered to transmit narrow bands centered about 0.63, 1.6, 2.5, or 6.3 kHz. Despite the sameness of pitch generated by all stimuli, Os perceived the 0.63-, 1.6-, and 2.5-kHz-centered sounds as originating low, middle, and high, respectively, in the MSP, regardless of their actual positions. The stimuli centered about 6.3 kHz, on the other hand, were located accurately by most Os. These findings were interpreted to mean that under conditions of inadequate auditory cues, timbre, not pitch, influences perceived elevation. The implication is that timbre also served as the cue for the apparent elevation of those sounds which, due to their high-frequency components, can be located accurately.  相似文献   

9.
Auditory saltation is a spatiotemporal illusion in which the judged positions of sound stimuli are shifted toward subsequent stimuli that follow closely in time and space. In this study, the "reduced-rabbit" paradigm and a direct-location method were employed to investigate the effect of spectral sound content on the saltation illusion. Eighteen listeners were presented with sound sequences consisting of three high-pass or low-pass filtered noise bursts. Noise bursts within a sequence were either the same or differed in frequency. Listeners judged the position of the second sound using a hand pointer. When the time interval between the second and third sound was short, the target was shifted toward the location of the subsequent stimulus. This displacement effect did not depend on the spectral content of the first sound, but decreased substantially when the second and third sounds were different. The results indicated an effect of spectral difference on saltation that is discussed with regard to a recently proposed stimulus integration approach in which saltation was attributed to an interaction between perceptual processing of temporally proximate stimuli.  相似文献   

10.
The application of the power-spectrum model of masking to the detectability of a signal masked by dichotic noise was investigated in three experiments. In each experiment, the signal was a 2-kHz sinusoid of 400-msec duration, masked by either one or two 800-Hz wide bands of noise presented singly or in pairs. In Experiment 1, we compared the detectability of a diotic signal masked by dichotic noise with the detectability of a monaural signal masked by each of the noises separately. The spectrum level of the noise was 35 dB SPL. For dichotic presentations, the signal was sent to both ears while pairs of noise bands, one below and one above the signal frequency, were presented together, one band to each ear. Threshold levels with the dichotic stimuli were lower than or equal to the thresholds with either ear's stimulus on its own. Similar dichotic stimuli were used in Experiment 2, except that the signal frequency was nearer to one or the other of the bands of masking noise, and the noise had a spectrum level of 50 dB SPL. In Experiment 3, thresholds were obtained with two sets of symmetrically and asymmetrically placed notched-noise maskers. For one of these sets, the spectrum level of both noise bands was 35 dB SPL; for the other set, interaural intensity differences were introduced in the form of an inequality in the levels of the noise bands on either side of the signal. In one ear, the spectrum level of the lower frequency noise band was 35 dB SPL and the spectrum level of the higher frequency noise band was 25 dB SPL, whereas in the other ear, the allocation of noise level to noise band was reversed. The dichotic thresholds obtained with the unequal noise maskers could be predicted from the shapes of the auditory filters derived with equal noise maskers. The data from all three experiments suggest that threshold signal levels in the presence of interaural differences in masker intensity depend principally on the ear with the higher signal-to-masker ratio at the output of its auditory filter, a finding consistent with the power-spectrum model of masking.  相似文献   

11.
Prince S  Offen S  Cumming BG  Eagle RA 《Perception》2001,30(3):367-380
We examine how differently oriented components contribute to the discrimination of motion direction along a horizontal axis. Stimuli were two-frame random-dot kinematograms that were narrowband filtered in spatial frequency. On each trial, subjects had to state whether motion was to the left or the right. For each stimulus condition, Dmax (the largest displacement supporting 80% correct direction discrimination performance) was measured. In experiment 1, Dmax was measured for orientationally narrowband stimuli as a function of their mean orientation. Dmax was found to increase as the orientation of the stimuli became closer to the axis of motion. Experiment 2 used isotropic stimuli in which some orientation bands contained a coherent motion signal, and some contained only noise. When the noise band started at vertical orientations and increased until only horizontal orientations contained a coherent motion signal, Dmax increased slightly. This suggests that near-vertical orientations interfere with motion perception at large displacements when they contain a coherent motion signal. When the noise band started at horizontal and increased until only vertical orientations contained the motion signal, Dmax decreased steadily. This implies that Dmax depends at least partly on the most horizontal motion signal in the stimulus. These results were contrasted with two models. In the first, the visual system utilises the most informative orientations (nearest horizontal). In the second, all available orientations are used equally. Results supported an intermediate interpretation, in which all orientations are used but more informative ones are weighted more heavily.  相似文献   

12.
In this paper, the auditory motion aftereffect (aMAE) was studied, using real moving sound as both the adapting and the test stimulus. The sound was generated by a loudspeaker mounted on a robot arm that was able to move quietly in three-dimensional space. A total of 7 subjects with normal hearing were tested in three experiments. The results from Experiment 1 showed a robust and reliable negative aMAE in all the subjects. After listening to a sound source moving repeatedly to the right, a stationary sound source was perceived to move to the left. The magnitude of the aMAE tended to increase with adapting velocity up to the highest velocity tested (20°/sec). The aftereffect was largest when the adapting and the test stimuli had similar spatial location and frequency content. Offsetting the locations of the adapting and the test stimuli by 20° reduced the size of the effect by about 50%. A similar decline occurred when the frequency of the adapting and the test stimuli differed by one octave. Our results suggest that the human auditory system possesses specialized mechanisms for detecting auditory motion in the spatial domain.  相似文献   

13.
A visually reinforced operant paradigm was employed to examine the relationship between the difference limen (DL) for intensity and level of the standard during infancy. In Experiment 1,7-month-old infants and adults detected increments in continuous noise presented via headphones at each of four levels ranging from 28 to 58 dB SPL. Noise stimuli were 2-octave bands centered at either 400 or 4000 Hz, and increments were 10 and 100 msec in duration. Infants’ DLs were significantly larger than those of adult subjects and significantly larger for low- than for high-frequency stimuli. For the high-frequency noise band, infants’ DLs were generally consistent with Weber’s law,remaining essentially constant for standards higher than 28 dB SPL (3 dB SL) for 100-msec increments and 38 dB SPL (13 dB SL) for 10-msec increments. For low-frequency noise, infants’ absolute thresholds were exceptionally high, and sensation levels of the standards were too low to adequately describe the relationship. In Ex-periment 2, 7-month-old infants detected 10- and 100-msec increments in 400-Hz noise stimuli presented in sound field. Infants’ low-frequency DLs were large at low intensities and decreased with increases in level of the standard up to at least 30 dB SL. For both low- and high-frequency noise, the difference between DLs for 10- and 100-msec increments tended to be large at low levels of the standard and to decrease at higher levels. These results suggest that the relationship between the DL and level of the standard varies with both stimulus frequency and duration during infancy. However, stimulus-dependent immaturities in increment detection may be most evident at levels within approximately 30 dB of absolute threshold.  相似文献   

14.
Sound localization in small birds: absolute localization in azimuth   总被引:1,自引:0,他引:1  
Nine small birds of 3 species (Melopsittacus undulatus, Serinus canarius, and Poephila guttata) were trained in an operant procedure to fly to sound sources for food reward. The angle between the 2 sound sources was varied on a session-by-session basis, and threshold (i.e., minimum resolvable angle) was taken as the angle that corresponded to a performance level of 75% correct. In all, thresholds were calculated for pure tones of 5 different frequencies, noise bands of 3 different spectral compositions, and species-specific contact or distance calls recorded from each of the 3 species. Thresholds for both simple and complex stimuli were larger than 25 degrees. There were statistically significant species differences for each stimulus set, but these differences were not correlated with species differences in head size. Birds with 1 ear plugged performed as well as binaural birds in this task. Birds deafened in 1 ear, however, performed at chance.  相似文献   

15.
Infants 6, 9, 12, 15, and 18 months of age were seated in a dark room directly facing an array of nine loudspeakers positioned along the median vertical plane. One loudspeaker was positioned at ear level, 0 degree, and four others each were positioned above and below 0 degree. To examine infants' resolution of auditory space in the median vertical plane we sought to determine the smallest angular shift in the vertical location of a sound that infants could reliably detect (i.e., minimum audible angle). A two-alternative forced-choice procedure was used in which a sequence of white noise bursts was presented initially at 0 degree, and then shifted vertically (i.e., above or below 0 degree) and continued to be presented until the infant made a directional response; correct responses were visually reinforced. The smallest angular shift in vertical location that was reliably detected systematically decreased with increasing age between 6 months (15 degrees) and 18 months (4 degrees), suggesting a finer partitioning of auditory space along the vertical axis over this age range. By 18 months infants' performance matched that of a group of adults tested under the same circumstances.  相似文献   

16.
The effect of full-field sinusoidal visual roll motion stimuli of various frequencies and peak velocities upon the orientation of subjective visual vertical (SV) was studied. The angle of the optokinetically induced displacement of SV was found to be a linear function of the logarithm of the stimulus oscillation angle. Interindividual slopes of this function varied between 2 and 9. The logarithmic function is independent of stimulus frequency within the range of .02 Hz to .5 Hz and of peak stimulus velocity from 7.5°/sec to 170°/sec. It holds for oscillation angles up to 100°–140°. With larger rotational angles, saturation is reached. With small stimulus angles, a surprisingly high threshold (5°-8°) was observed in our experiments. This may reflect the unphysiological combination of visual roll stimuli without corroborating vestibular and proprioceptive inputs normally present when body sway produces visual stimulation. Under natural conditions, the visual feedback about spontaneous sway stabilizes body posture by integrating rotational velocity over stimulus duration which is equal to rotational angle.  相似文献   

17.
Alert newborn and 5-month-old infants' responsivity to variations in spectral composition of a rattle sound was examined. Each child received four stimulus conditions: low-, mid-, and high-frequency bandpass-filtered rattles and an unfiltered broadband rattle. Stimuli were played through a single loudspeaker laterally positioned, and head orientation and cardiac responses to sound were recorded. Compared to other stimuli, the low-frequency sound elicted less head turning in both age groups, with this effect exaggerated in younger infants. Head orientation toward the mid-frequency, high-frequency, and broadband stimuli did not differ with age. For all conditions, latency and duration of newborns' head turning was longer than that of 5-month-olds. Newborns responded with cardiac deceleration only on trials when they failed to turn. When head turns occurred, an acceleratory cardiac response was obtained. Five-month-olds responded with reliable cardiac deceleration irrespective of head turning toward the sound. Heart rate change did not vary as a function of frequency at either age, suggesting that all stimuli were equally effective in eliciting the infant's attention.  相似文献   

18.
The effects of stimulus duration and spatial separation on the illusion of apparent motion in the auditory modality were examined. Two narrow-band noise sources (40 dB, A-weighted) were presented through speakers separated in space by 2.5°, 5°, or 100, centered about the subject’s midline. The duration of each stimulus was 5, 10, or 50 msec. On each trial, the sound pair was temporally separated by 1 of 10 interstimulus onset intervals (ISOIs): 0, 2, 4, 6, 8, 10, 15, 20, 50, or 70 msec. Five subjects were tested in nine trial blocks; each block represented a particular spatial-separation-duration combination. Within a trial block, each ISOI was presented 30 times each, in random order. Subjects were instructed to listen to the stimulus sequence and classify their perception of the sound into one of five categories: single sound, simultaneous sounds, continuous motion, broken motion, or successive sounds. Each subject was also required to identify the location of the first-occurring stimulus (left or right). The percentage of continuous-motion responses was significantly affected by the ISOI [F(9,36) = 5.67,p < .001], the duration × ISOI interaction [F(18,72) = 3.54,p < .0001], and the separation × duration × ISOI interaction [F(36,144) = 1.51,p < .05]. The results indicate that a minimum duration is required for the perception of auditory apparent motion. Little or no motion was reported at durations of 10 msec or less. At a duration of 50 msec, motion was reported most often for ISOIs of 20–50 msec. The effect of separation appeared to be limited to durations and-ISOIs during which little motion was perceived.  相似文献   

19.
We describe a set of pictorial and auditory stimuli that we have developed for use in word learning tasks in which the participant learns pairings of novel auditory sound patterns (names) with pictorial depictions of novel objects (referents). The pictorial referents are drawings of "space aliens," consisting of images that are variants of 144 different aliens. The auditory names are possible nonwords of English; the stimulus set consists of over 2,500 nonword stimuli recorded in a single voice, with controlled onsets, varying from one to seven syllables in length. The pictorial and nonword stimuli can also serve as independent stimulus sets for purposes other than word learning. The full set of these stimuli may be downloaded from www.psychonomic.org/archive/.  相似文献   

20.
A number of reports have suggested that changing intensity in short tonal stimuli is asymmetrically perceived. In particular, steady stimuli may be heard as growing louder; stimuli must decrease in intensity to be heard as steady in loudness. The influence of stimulus duration on this perceptual asymmetry was examined. Three participants heard diotic tonal stimuli of eight durations between 0.8 s and 2.5 s. Each stimulus increased, decreased, or remained steady in intensity; initial intensity was 40 dB SPL (sound pressure level relative to 0.0002 dynes/cm2), and carrier frequency was 1 kHz. Participants made forced binary responses of “growing louder” or “growing softer” to each stimulus. For each duration, that value of intensity change eliciting equal numbers of both responses was determined. The results indicated a pronounced perceptual asymmetry for 0.8-s stimuli, which diminished for longer stimuli; changing intensity in 2.5-s stimuli was perceived symmetrically. Additionally, sensitivity to changing intensity improved as stimulus duration increased, suggesting that responses may be based in part on the difference in intensity between the beginning and end of the stimulus. Possible ramifications of the asymmetry reside in (a) the percussive nature of many natural sounds and (b) selective responding to approaching sound sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号