首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors examined the hypothesis that the phasic and the static cross-talk effects found in bimanual movements with different target amplitudes originate at different functional levels of motor control, which implies that the effects can be dissociated experimentally. When the difference between the short and the long amplitudes assigned to the 2 hands of 12 participants was decreased, the static effect disappeared, In contrast, the phasic effect, which can be observed only at short preparation intervals, did not disappear; although it became smaller in absolute terms, in relative terms it did not. In addition, the authors compared the time course of amplitude variability and examined the correlation between left hand and right hand amplitudes. The disappearance of the phasic amplitude assimilation at increasing preparation intervals turned out to be delayed relative to the decline of the correlation between amplitudes. That finding suggests that the assimilation of mean amplitudes and the correlation between left hand and right hand amplitudes are not fully equivalent indicators of intermanual interactions, but may indicate different kinds of inter-limb coupling.  相似文献   

2.
Structural constraints on bimanual movements   总被引:5,自引:0,他引:5  
Summary A theoretical framework is outlined, according to which structural constraints on bimanual movements can at least in part be understood as coupling between parameters of generalized motor programs. This framework provides a conceptual link between reaction-time data from experiments with bimanual responses, successive unimanual responses, and choice between left-hand and right-hand responses on the one hand and performance data obtained with concurrently performed continuous movements or sequences of discrete responses on the other. On the basis of data obtained with different methods for the study of intermanual interactions, a distinction is drawn between steady-state and transient constraints, and the hypothesis that the tendency to coactivate homologous muscles originates from a transient coupling of program parameters is applied to a variety of observations on performance in different tasks. Finally, the notion of transient constraints is applied to other types of intermanual interdependencies and to interpersonal coordination; the possible emergence of transient constraints from steady-state constraints through progressive development of inhibitory pathways in childhood is discussed, as is the potential biological significance of transient constraints.Part of the work reported in this paper was done while I enjoyed the hospitality on the NIAS, Wassenaar (NL)  相似文献   

3.
Similar timing of movements of the two hands has been observed when they are moved to separate targets (Kelso et al., 1979). This was taken as evidence for a low-level, co-ordinative structure that constrains the muscles of the arms to function as a single unit.

An experiment to investigate the relation between voluntary timing control and timing in bimanual movement is described. The task required subjects to make repetitive movements of unequal difficulty for the two hands with the hands arriving synchronously at their respective targets. Estimates of the covariance of successive intervals defined by pairs of left-right responses (arrivals at the targets) were not negative. It is shown that this indicates that the motor delay between the timer regulating repetition rate and the overt responses has no component common to left- and right-responses. Although the co-ordinative structure is described as low-level, in terms of the time sequence of operations associated with each response pair, the data indicate its place is before, not after, the timer.  相似文献   

4.
5.
While bimanual interference effects can be observed when symbolic cues indicate the parameter values of simultaneous reaching movements, these effects disappear under conditions in which the target locations of two movements are cued directly. The present study investigates the generalizability of these target-location cuing benefits to conditions in which symbolic cues are used to indicate target locations (i.e., the end points of bimanual movements). Participants were asked to move to two of four possible target locations, being located either at the same and different distances (Experiment 1), or in the same and different directions (Experiment 2). Circles and crosses served as symbolic target-location cues and were arranged in a symmetric or non-symmetric fashion over the four target locations. Each trial was preceded by a variable precuing interval. Results revealed faster initiation times for equivalent as compared to non-equivalent target locations (same vs. different cues). Moreover, the time course of prepartion suggests that this effect is in fact due to target-equivalence and not to cue-similarity. Bimanual interference relative to movement parameter values was not observed. These findings suggest that cuing target locations can dominate potential intermanual interference effects during the concurrent programming of different movement parameter values.  相似文献   

6.
Performance of unimanual and bimanual multiphased prehensile movements   总被引:1,自引:0,他引:1  
By manipulating task action demands in 2 experiments, the author investigated whether the context-dependent effects seen in unimanual multiphase movements are also present in bimanual movements. Participants (N = 14) in Experiment 1 either placed or tossed objects into targets. The results indicated that the intention to perform a subsequent action with an object could influence the performance of an earlier movement in a sequence in both unimanual and bimanual tasks. Furthermore, assimilation effects were found when the subsequent tasks being performed by the 2 hands were incongruent. In Experiment 2, the author investigated in 12 participants whether planning in a multiphase movement includes some representation of the accuracy demands of the subsequent task. The accuracy demands of a subsequent task did not appear to influence initial movement planning. Instead, the present results support the notion that it is the action requirements of the subsequent movement that lead to context-dependent effects.  相似文献   

7.
Structural constraints affect the coordination of bimanual movements in ways that have been taken to suggest that the specification of different movement amplitudes is subject to strong intermanual interference effects. Most experiments taken to support this notion, however, confounded variations of movement amplitudes with symmetry in starting locations and variations in target location. The present experiment was designed to further investigate the relative influence of the parameters starting location, movement amplitude, and target location on bimanual movement coordination. Participants performed simultaneous reaching movements with the left and right hand from same and different starting locations to same and different target locations. On each trial, two movements could match on none, one, or all of the parameters. We assessed the influence of each parameter by comparing conditions in which only a single parameter matched between the two hands with conditions in which all parameters differed. The reaction-time data revealed some challenging results for previous studies: (1) same starting locations significantly delayed movement initiation; (2) specifying movement amplitudes had virtually no effect on movement initiation, whereas (3) selecting same target locations significantly benefited the bimanual responses. These findings cannot be taken to support the notion that amplitude specification affects the initiation of bimanual movements. Rather, they support the notion that the initial starting locations of the two hands and the selection of target locations decide about the ease with which we perform bimanual reaching movements.  相似文献   

8.
Two experiments reported the effect of movement time and knowledge of results on overall spatial errors in rapid simultaneous bimanual aiming movements. In Exps. 1 (n=32) and 2 (n=32), participants used light, aluminum levers oriented vertically in the sagittal plane to make reversal movements over the same distance (20 degrees - 20 degrees or 60 degrees - 60 degrees) or different distances (20 degrees - 60 degrees) in each arm in 250, 350, or 450 msec. to the reversal point. The participants in Exp. 1 were given knowledge of results on the spatial and temporal accuracy for both arms, while in Exp. 2 knowledge of results was provided for one arm only. Strong speed-accuracy tradeoffs were shown for all groups in both experiments, but errors were larger in the different distance movements compared to the same distance groups. Spatial errors were also elevated in Exp. 2 when knowledge of results was not available compared to those conditions where knowledge of results was available. Overall, bimanual speed-accuracy tradeoffs are similar to single arm movements when one moves the same distance in each arm and when knowledge of results is available.  相似文献   

9.
10.
While it is frequently advantageous to be able to use our hands independently, many actions demand that we use our hands co-operatively. In this paper we present two experiments that examine functional binding between the limbs during the execution of bimanual reach-to-grasp movements. The first experiment examines the effect of gaze direction on unimanual and bimanual reaches. Even when subjects' eye movements are restricted during bimanual reaches so that they may only foveate one target object, the limbs remain tightly synchronized to a common movement duration. In contrast, grip aperture is independently scaled to the size of the target for each hand. The second experiment demonstrates however, that the independent scaling of grip aperture is task dependent. If the two target objects are unified so that they appear to be part of a single object, grip apertures become more similar across the hands (i.e., grip aperture to the large target object is reduced in size while peak aperture to the small target item is increased in size). These results suggest that the coupling of the limbs can operate at a functional level.  相似文献   

11.
Many everyday tasks require that we use our hands co-operatively. For tasks where both hands are required to perform the same action, a common motor program can be used. But, where each hand must perform a different action, some degree of independent control of each hand is required. In this paper we examine the co-ordination of bimanual movement kinematics in a female patient recovering from brain injury involving anterior regions of the parietal lobe of the right hemisphere, which has resulted in a dense hemianaesthesia of her left arm. A particular focus of this paper is the co-ordination of bimanual movements for reaches executed without visual feedback. Specifically we present new data, which quantify the synchronisation of patient D.B.'s hands by comparing their relative time lag at the start and the end of her bimanual reaches. The results are discussed with particular reference to the role played by limb proprioception in the planning and control of prehension movements.  相似文献   

12.
To examine the role of visual monitoring in the between-hand differences in skilled manual movements, eye movements and performance during bimanual aiming tasks were analysed. When subjects were required to make bimanual aiming responses to symmetrically placed targets, they preferentially monitored the movements of the right hand, resulting in better performance on the right hand. In addition, manipulation of the subject's gaze showed that the movements of the right hand were more influenced by visual monitoring than those of the left hand. The results were interpreted as showing that the between-hand differences in skilled movements are mainly due to the different efficiency in the use of visual monitoring.  相似文献   

13.
This study extended earlier work by showing spatial assimilations in sequential bimanual and unimanual movements separated by 1.5-3.5 s. In Experiments 1 and 2, 30 right-handed participants (18-22 years of age) made rapid single and bimanual lever reversals of 20 degrees and 60 degrees assigned to 1.5, 2.5, or 3.5 s intermovement interval groups. Participants self-timed the intermovement interval in the first experiment, but it was provided in the second experiment using separate auditory stimuli. In the third experiment, participants performed both the 20 degree and 60 degree movement with the same hand. In all experiments, the shorter-distance limb overshot and the longer-distance limb undershot the targets in both bimanual and unimanual sequential movements relative to single movements in all three intermovement interval groups, particularly in the non-dominant left limb. The results suggest that assimilation effects in sequential movements are caused by command interactions at the planning level, but the effects are reduced by practice.  相似文献   

14.
The performance of bimanual movements involving separate objects presents an obvious challenge to the visuo-motor system: Visual feedback can only be obtained from one target at a time. To overcome this challenge overt shifts in visual attention may occur so that visual feedback from both movements may be used directly (Bingham, Hughes, & Mon-Williams, 2008; Riek, Tresilian, Mon-Williams, Coppard, & Carson, 2003). Alternatively, visual feedback from both movements may be obtained in the absence of eye movements, presumably by covert shifts in attention (Diedrichsen, Nambisan, Kennerley, & Ivry, 2004). Given that the quality of information falls with increasing distance from the fixated point, can we obtain the level of information required to accurately guide each hand for precision grasping of separate objects without moving our eyes to fixate each target separately? The purpose of the current study was to examine how the temporal coordination between the upper limbs is affected by the quality of visual information available during the performance of a bimanual task. A total of 11 participants performed congruent and incongruent movements towards near and/or far objects. Movements were performed in natural, fixate-centre, fixate-left, and fixate-right vision conditions. Analyses revealed that the transport phase of incongruent movements was similar across vision conditions for the temporal aspects of both the transport and grasp, whereas the spatial aspects of grasp formation were influenced by the quality of visual feedback. We suggest that bimanual coordination of the temporal aspects of reach-to-grasp movements are not influenced solely by overt shifts in visual attention but instead are influenced by a combination of factors in a task-constrained way.  相似文献   

15.
It has been suggested that the temporal control of rhythmic unimanual movements is different between tasks requiring continuous (e.g., circle drawing) and discontinuous movements (e.g., finger tapping). Specifically, for continuous movements temporal regularities are an emergent property, whereas for tasks that involve discontinuities timing is an explicit part of the action goal. The present experiment further investigated the control of continuous and discontinuous movements by comparing the coordination dynamics and attentional demands of bimanual continuous circle drawing with bimanual intermittent circle drawing. The intermittent task required participants to insert a 400ms pause between each cycle while circling. Using dual-task methodology, 15 right-handed participants performed the two circle drawing tasks, while vocally responding to randomly presented auditory probes. The circle drawing tasks were performed in symmetrical and asymmetrical coordination modes and at movement frequencies of 1Hz and 1.7Hz. Intermittent circle drawing exhibited superior spatial and temporal accuracy and stability than continuous circle drawing supporting the hypothesis that the two tasks have different underlying control processes. In terms of attentional cost, probe RT was significantly slower during the intermittent circle drawing task than the continuous circle drawing task across both coordination modes and movement frequencies. Of interest was the finding that in the intermittent circling task reaction time (RT) to probes presented during the pause between cycles did not differ from the RT to probes occurring during the circling movement. The differences in attentional demands between the intermittent and continuous circle drawing tasks may reflect the operation of explicit event timing and implicit emergent timing processes, respectively.  相似文献   

16.
It is known that when simultaneous bimanual aiming movements are made to targets with different IDs (Index of Difficulty), Fitts' Law is violated. There is massive slowing of the easy target hand, but a debate has arisen over the degree of synchronization between the hands and whether this effect represents a coordinative structure or interference due to neural cross-talk. This issue was investigated in an experiment with 12 subjects who moved styli forward in the sagittal plane to pairs of targets that differed in difficulty (0.77/3.73 ID and 0.77/5.17 ID). Reaction time, movement time, and kinematic measures of resultant velocity and acceleration were analysed. The results showed clear-cut timing differences between the hands that depended on both the ID difference between target pairs and elapsed time of the movement. The violation of Fitts' Law was confined to the easy target hand. Pronounced individual differences in both timing differences and left-right asymmetry were also noted. Neither the coordinative structure nor the neural cross-talk models can fully account for these data, and it is possible that the initial constraints on movement are moderated by visually driven corrective movements.  相似文献   

17.
This study extended earlier work by showing spatial assimilations in sequential bimanual aiming movements when the participant preplanned only the first movement of a two-movement sequence. Right-handed participants (n=20, aged 18 to 22 years) made rapid lever reversals of 20 degrees and 60 degrees singly and sequentially with an intermovement interval of 2.5 sec. Following blocked single practice of both movements in each hand (15 trials each), two sets of 30 sequential practice trials were completed. The sequences began with either the long or the short movement and the participant always knew the goal of the first movement. During the intermovement interval, the experimenter gave instructions to complete the sequence with a short movement, a long movement, or no movement in a random order. Compared to the single trials, both movements in the sequence overshot the short-distance and undershot the long-distance goal. Spatial errors increased when a change in the movement goal was required for the second movement in the sequence. The experiment demonstrated that separate planning of sequential aiming movements can reduce spatial assimilation effects, but interference due to practice organization and switching the task's goal must also be overcome in order to produce accurate aiming movements.  相似文献   

18.
How do space and time relate in rhythmical tasks that require the limbs to move singly or together in various modes of coordination? And what kind of minimal theoretical model could account for the observed data? Earlier findings for human cyclical movements were consistent with a nonlinear, limit cycle oscillator model (Kelso, Holt, Rubin, & Kugler, 1981) although no detailed modeling was performed at that time. In the present study, kinematic data were sampled at 200 samples/second, and a detailed analysis of movement amplitude, frequency, peak velocity, and relative phase (for the bimanual modes, in phase and antiphase) was performed. As frequency was scaled from 1 to 6 Hz (in steps of 1 Hz) using a pacing metronome, amplitude dropped inversely and peak velocity increased. Within a frequency condition, the movement's amplitude scaled directly with its peak velocity. These diverse kinematic behaviors were modeled explicitly in terms of low-dimensional (nonlinear) dissipative dynamics, with linear stiffness as the only control parameter. Data and model are shown to compare favorably. The abstract, dynamical model offers a unified treatment of a number of fundamental aspects of movement coordination and control.  相似文献   

19.
In 3 experiments, the authors used a precuing protocol to examine the nature and cost of programming and the subsequent reprogramming of a movement's relative time and overall duration. Initial programming followed a fixed-order specification; knowledge of the necessary relative time was required before information regarding overall duration could be used in a manner that expedited response planning. In the case of reprogramming, however, when a modification had to be made in either the relative time or overall duration of the anticipated and already-prepared response, performers chose to completely reprogram the entire response. Complete reprogramming occurred even when the performer had correctly prepared the higher order relative-time component and only had to modify the overall duration of the movement. The data indicate that organizing movement timing before movement initiation is accomplished in a fundamentally different manner depending on whether the movement is being initially compiled or modified.  相似文献   

20.
《Human movement science》1999,18(2-3):345-375
The timing of repetitive movements was assessed in a callosotomy patient under unimanual and bimanual conditions. Similar to neurologically healthy individuals, the patient exhibited strong temporal coupling in the bimanual condition. Moreover, for both the left and right hands, within-hand temporal variability was reduced in the bimanual condition compared to the unimanual conditions. This bimanual advantage is hypothesized to reflect the temporal integration of separable timing signals, one associated with the left hand and one associated with the right hand (Helmuth, L. L., & Ivry, R. B. (1996). When two hands are better than one: Reduced timing variability during bimanual movements. Journal of Experimental Psychology: Human Perception and Performance, 2, 278–293). The fact that it persists following callosotomy is inconsistent with models that attribute bimanual coordination in these patients to the control of a single hemisphere. Rather, the results suggest that motor commands from the two hemispheres are integrated subcortically.PsychINFO Classification: 2330; 2340; 2520  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号