首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The function of the popliteus muscle [PM] is crucial to knee function. However, it remained unclear in vivo. Thus, this study aimed to explore the PM function in the non-weight-bearing and the weight-bearing conditions in vivo. Fourteen healthy subjects participated in this study. The muscle stiffness of the PM was measured using shear wave elastography as an index of muscle force. Muscle stiffness was measured at 30° knee flexion as a reference value. Muscle stiffness was also measured at passive 0°knee flexion and passive 20° external rotation and internal rotation at 30° knee flexion, and during isometric knee extension, flexion, external rotation, and internal rotation at 30° knee flexion. Moreover, muscle stiffness was measured during one-leg standing at 0° and 30° of knee flexion. Muscle stiffness was significantly greater at passive 0° knee flexion and 20° external rotation and during isometric knee flexion and internal rotation than the reference value. Two-way analysis of variance revealed significant main effects of weight bearing and knee angle: Muscle stiffness increased with weight bearing and knee extension. Moreover, muscle stiffness was significantly lower at 30° than at 0° knee flexion during one-leg standing. The PM function is knee flexion and internal rotation, and the PM force increases with weight bearing and decreases with knee flexion during one-leg standing.  相似文献   

2.
PurposeRestricted ankle dorsiflexion can promote aberrant biomechanics associated with risk for knee injury during dynamic activities. Attentionally focused instructions have been used to improve high-risk knee biomechanics during landing tasks. Yet, it is unknown whether attentionally focused instruction can effectively improve landing patterns in the presence of a mechanical restriction on the ankle. Therefore, our purpose was to determine whether restricting ankle dorsiflexion by use of bracing mitigated the effects of attentional foci on landing biomechanics in healthy females.MethodsWe used a crossover design to investigate lower extremity biomechanics in 19 healthy females between the ages of 18–35 during a series of jump-landing tasks. Participants completed 6 blocks of 3 jump-landings on separate force platforms in a randomized order based on brace condition (brace, no brace) and mode of attentional foci (neutral, internal focus [IF], external focus [EF]). Attentionally focused instructions were provided immediately prior to 3 practice jump-landings, followed by 5 test jump-landings with self-controlled feedback only.ResultsAnkle bracing decreased peak dorsiflexion and sagittal range of motion (ROM) (mean difference: 5.7–5.8°), and peak inversion and frontal ROM (mean difference: 2.4–3.0°). However, hip flexion ROM (mean difference: 1.8°) increased compared to the no brace condition. Regardless of ankle bracing, EF instruction increased peak hip flexion (mean difference: 4.9°) and hip flexion range of motion (mean difference: 3.8–4.6°), while decreasing peak knee valgus (mean difference: 0.8–1.0°) and knee valgus moment (mean difference: 0.04 Nm/kg). Additionally, EF instruction increased peak hip abduction to a similar degree when braced (mean difference: 3.6–4.0°) and not braced (mean difference: 2.1–2.5°). Lastly, EF instruction increased hip abduction ROM only when braced (mean difference: 2.3–2.4°), but decreased peak knee valgus power only when not braced (mean difference: 0.18 W/kg).ConclusionsOur findings indicate that mechanically restricting ankle dorsiflexion does not mitigate the ability of EF instruction to enhance jump-landing performance by means of improving hip and knee biomechanics in healthy females. However, our findings suggest an improved ability to control the rate of knee valgus loading when not braced. Therefore, we conclude that EF instruction remains a viable clinical strategy to improve landing patterns in the presence of restricted ankle dorsiflexion, yet this approach may be ineffective to reduce the rate of knee joint loading.  相似文献   

3.
BackgroundOveruse accounts for 82% of injuries in military personnel, and these occur predominantly in the spine and lower limbs. While non-linear analyses have shown changes in overall stability of the movement during load carriage, individual joint contributions have not been studied. The concept of entropy compensation between task, organism and environmental constraints is studied at a joint level.Research questionThe aim of this study was to investigate whether using different methods of loading by military personnel would have an effect on the sample entropy of the joint ranges of motion.MethodsEleven male reserve infantry army soldiers (age: 22 ± 2 years; height: 1.80 ± 0.06 m; mass: 89.3 ± 14.4 kg) walked an outdoor, 800 m course under 5 load conditions: unloaded, 15 kg backpack, 25 kg backpack, 15 kg webbing and backpack and 25 kg webbing and backpack. Kinematic data was recorded at 240 Hz using the Xsens motion capture system. The ranges of motion (ROM) of the spine, hips and knee were calculated for each gait cycle. Mean ROM, coefficient of variation (CV) of the ROM and the sample entropy of the ROM were compared between conditions.ResultsSpine side flexion ROM decreased significantly from the control condition in all loaded conditions, while sample entropy of the spine side flexion ROM increased in some conditions with no significant change in CV. Conversely, the hip flexion ROM increased significantly from the control, while sample entropy of the hip flexion ROM decreased.SignificanceThese results suggest that entropy compensation may propagate at a joint level. Understanding that a decrease in certainty with which a joint angle is selected, may be accompanied by an increase at a neighbouring joint. This could be significant in monitoring injuries as a result of environmental or task constraints.  相似文献   

4.
The patellofemoral (PF) joint is susceptible to many pathologies resulting from acute injury, chronic disease and complications following surgical treatment of the knee. The objectives of this study were to describe case series measurements of patellar motion in healthy older adults as they performed three gait activities, determine patellar tendon angle and moment arm, and show if these quantities were activity dependent. A stereo radiography system was utilized to obtain the 3D PF kinematics of seventeen healthy people over 55 years of age (8F/9M, 66 ± 7.9 years old, 75.7 ± 20.5 kg) as they performed level walking, a step down, and a pivot turn. For a similar portion of the gait cycle, patellar flexion (6.2° ± 5.8) and average range of motion (ROM) (11.0° ± 5.9°) for walking with a step down was greater compared to the other gait activities (gait ROM 6.9° ± 4.3°, pivot ROM 5.7° ± 3.3°), while the average range of motion for patella tilt was greater during walking with a pivot turn (8.6° ± 3.9°). However, each subject displayed distinct PF kinematic trends during all activities with a few notable exceptions. Importantly, the knee extensor mechanism characteristics of patellar tendon angle and moment arm showed considerable variation across subjects but were largely unaltered by changing activities. The variation between subjects and the different behavior of the patella during the step down and pivot emphasized the need for analysis of a range of activities to reveal individual response to pathology and treatment in patellar maltracking and osteoarthritis.  相似文献   

5.
ObjectiveTo present and evaluate a method to objectively quantify the functional regions of joint lumped passive stiffness.BackgroundJoint passive stiffness has an important clinical role in constraining the degrees of freedom at a given joint. Links between passive stiffness and injury, pathology and function may be better understood if joint passive stiffness can be accurately quantified. Thus, a technique was developed to objectively partition passive stiffness curves into 3 linear regions (low, transition and high stiffness).MethodsThe passive stiffness of the lumbar spine is presented as an example. Simulated data was used to determine the sensitivity of the method to Gaussian white noise in force measurements. An experimentally determined lumbar passive flexion curve was used to demonstrate the technique on human data. Breakpoint analysis was employed on the resulting moment-angle cures to partition the curve into low, transition and high stiffness zones.ResultsThe proposed method was successful at discriminating between the three stiffness zones and quantifying the passive stiffness within each zone. The algorithm had difficulty determining parameters in the low-stiffness zone in the presence of noise.ConclusionsThe proposed method can be used as an objective method to investigate passive stiffness. Breakpoint Analysis can identify the three functional linear zones of passive stiffness. The slopes of these linear regions are then used as a measure of passive stiffness, which have applications in clinical populations and research studies, to assess time varying responses, or changes in stiffness following an intervention.  相似文献   

6.
We aimed to examine the relationship among the muscle shear modulus at rest, maximal joint torque, and rate of torque development (RTD). Twenty-seven participants (28 ± 5 years, 13 women) were recruited in the study. The cross-sectional area (CSA) of the medial gastrocnemius (MG) muscle belly and shear modulus at an ankle joint angle of 0° were calculated using magnetic resonance imaging and ultrasound shear wave elastography, respectively. Subsequently, participants performed maximal isometric plantar flexion at 0° ankle joint angle [maximal voluntary contraction (MVC) test] as fast and hard as possible (RTD test). RTD was calculated from the time–torque curve over time intervals of 0–30, 0–50, 0–100, 0–150, and 0–200 ms from the onset of plantar flexion during the RTD test and was normalized by MVC torque to exclude muscle strength. MG CSA correlated significantly with MVC torque (r = 0.572), whereas MG shear modulus did not. In contrast, MG shear modulus correlated significantly with normalized RTD at all time intervals (r = 0.460–0.496). These results suggest that passive muscle stiffness is not associated with muscle force; however, higher passive muscle stiffness at a given joint angle may contribute to rapid force production.  相似文献   

7.
PurposeGait disorders in multiple sclerosis (MS) are well studied; however, no previous study has described upper limb movements during gait. However, upper limb movements have an important role during locomotion and can be altered in MS patients due to direct MS lesions or mechanisms of compensation. The aim of this study was to describe the arm movements during gait in a population of MS patients with low disability compared with a healthy control group.MethodsIn this observational study we analyzed the arm movements during gait in 52 outpatients (mean age: 39.7 ± 9.6 years, female: 40%) with relapsing-remitting MS with low disability (mean EDSS: 2 ± 1) and 25 healthy age-matched controls using a 3-dimension gait analysis.ResultsMS patients walked slower, with increased mean elbow flexion and decreased amplitude of elbow flexion (ROM) compared to the control group, whereas shoulder and hand movements were similar to controls. These differences were not explained by age or disability.ConclusionUpper limb alterations in movement during gait in MS patients with low disability can be characterized by an increase in mean elbow flexion and a decrease in amplitude (ROM) for elbow flexion/extension. This upper limb movement pattern should be considered as a new component of gait disorders in MS and may reflect subtle motor deficits or the use of compensatory mechanisms.  相似文献   

8.
PurposeFamiliarization is necessary for an accurate strength assessment as it reduces confounding factors such as learning and training effects. However, the number of contractions required for familiarization and whether cross-limb transfer during familiarization could affect bilateral assessment are unknown. This study aimed at identifying the number of maximum contractions required for isokinetic knee extension and flexion familiarization in both dominant (D) and non-dominant limb (ND).MethodsTwenty-eight right-limb dominant males (age: 22.64 ± 2.60 years, BMI: 23.82 ± 2.85 kg/m2) performed a total of 6 sets (each consisted of 5 continuous maximum contractions) at 60o/s for each limb.ResultsThe number of sets required for familiarization is determined when the average peak torque achieved stabilization from the series of contractions of each limb. For knee extension, 3 sets (15 contractions) were required for familiarization, whereas 2 sets (10 contractions) for knee flexion in both limbs. Interestingly, for knee extension in ND, the number of sets required for familiarization was reduced to 2 following contralateral contractions in D, however, for knee extension in D, there was no difference in the number of sets required for familiarization following contralateral contractions in ND. While for knee flexion, no cross-limb transfer was observed. These observations suggest the presence of cross-limb transfer from D to ND during familiarization which implies the involvement of the central nervous system.ConclusionsPractically, familiarization for bilateral isokinetic strength assessment for knee extension and flexion at 60o/s should begin with the dominant limb for 3 sets to obtain accurate and reliable measurements.  相似文献   

9.
The authors' purpose was to evaluate bilateral ankle intrinsic stiffness in subcortical poststroke subjects. Ten subcortical poststroke subjects and 10 healthy controls participated in this study. The ankle passive stiffness at 3 different speeds and the electromyographic activity of the soleus, the gastrocnemius, and the tibialis anterior muscles of poststroke contralesional (CONTRA) and ipsilesional (IPSI) limbs and of one limb of healthy subjects were assessed. Ankle electromyographic activity was collected to ensure that reflexive or voluntary muscle activity was not being elicited during the passive movements. A significant interaction was observed between the effects of the limb (IPSI vs. CONTRA vs. control) and ankle position, F(4, 28) = 3.285, p = .025, and between the effects of the limb and the velocity of stretch, F(2, 14) = 4.209, p = .037. While increased intrinsic stiffness was observed in the CONTRA limb of poststroke subjects at ankle neutral position when the passive stretch was applied with a velocity of 1°/s (p = .021), the IPSI limb of poststroke subjects presented increased stiffness at 20º of plantar flexion when the stretch was applied with a velocity of 5°/s (p = .009) when compared to healthy group. Subcortical poststroke subjects present increased intrinsic stiffness in both the CONTRA and IPSI limbs in specific ankle amplitudes.  相似文献   

10.
IntroductionReduced neural drive is mainly thought to explain the bilateral deficit phenomenon, i.e. the difference in maximal isometric voluntary contraction (MVC) between unilateral and bilateral contractions. The aim of the present study was to further document if bilateral knee extension is associated with changes in voluntary activation level assessed by both peripheral nerve electrical stimulation and transcranial magnetic stimulation.MethodsFourteen subjects performed unilateral and bilateral knee extensions with both superimposed femoral electrical nerve stimulation and transcranial magnetic stimulation in order to assess voluntary activation (VAFNES) and cortical voluntary activation (VATMS), respectively.ResultsThere was no difference in MVC force of the tested leg when involved in unilateral and bilateral knee extensions (p = 0.87). However, a significantly reduced VAFNES (−2.1 ± 2.4%; p = 0.01) and VATMS (−1.6 ± 2.7%; p = 0.04) have been evidenced during bilateral knee extension.DiscussionIt is hypothesized that counterbalances could have masked the decrease of voluntary activation during bilateral contraction.  相似文献   

11.
Older runners are at greater risk of certain running-related injuries. Previous work demonstrated that aging influences running biomechanics, and suggest a compensatory relation between changes in the proximal and distal joints. Previous comparisons of interjoint coordination strategies between young and older runners could potentially have missed relevant differences by averaging coordination measures across time.ObjectiveTo compare coordination strategies between male runners under the age of 30 to those over the age of 60.MethodsTwelve young (22 ± 3 yrs, 1.80 ± 0.07 m, 78.0 ± 12.1 kg) and 12 older (63 ± 3 yrs, 1.78 ± 0.06 m, 73.2 ± 15.8 kg) male runners ran at 3.35 m/s on an instrumented treadmill. Ankle frontal plane, tibial transverse plane, knee sagittal plane, and hip frontal plane motion were measured. Inter-joint coordination was calculated using a modified vector coding technique. Coordination patterns and variability time series were compared between groups throughout stance using ANOVA for circular data.ResultsAt the ankle, older runners use in-phase propulsion (inversion, tibia external rotation) pattern following midstance (46–47% stance) while young runners are still in an in-phase collapse pattern (eversion, tibia external rotation). In coordination of the knee and hip, older runners maintained an in-phase collapse pattern (knee flexion, hip adduction) approaching midstance (35–37% stance), while younger runners use an out of phase strategy (knee extension, hip adduction). In coordination of the ankle and hip in the frontal plane, older runners again maintained an in phase collapse pattern up to midstance (34–39% stance), while younger runners used an out of phase strategy (ankle inversion, hip adduction). Variability was similar between age groups.ConclusionOlder runners appear to display altered coordination patterns during mid-stance, which may indicate protective biomechanical adaptations. These changes may also have implications for performance in older runners.  相似文献   

12.
The effect of dominance on upper limb (UL) kinematics has only been studied on scapular movements. Moreover, when an anatomical UL movement is performed in a specific plane, secondary movements in the remaining planes involuntarily occur. These secondary movements have not been previously evaluated. The aim of this study was to compare the kinematics of primary and secondary angles of dominant and non-dominant UL during anatomical movements in asymptomatic adults.25 asymptomatic adults performed 6 anatomical movements bilaterally: shoulder flexion-extension, abduction-adduction, horizontal abduction-adduction, internal-external rotation, elbow flexion-extension and wrist pronation-supination. Kinematics of the dominant and non-dominant UL were compared by their ranges of motion (ROM) and their angular waveforms (Coefficient of Multiple Correlations, CMC).The comparison between dominant and non-dominant UL kinematics showed different strategies of movement, most notably during elbow flexion-extension (CMC = 0.29): the dominant UL exhibited more pronation at maximal elbow flexion. Significant secondary angles were found on most of the UL anatomical movements; e.g. a secondary ROM of shoulder (humero-thoracic) external-internal rotation (69° ± 16°) was found when the subject intended to perform maximal shoulder abduction-adduction (119° ± 21°).Bias of dominance should be considered when comparing pathological limb to the controlateral one. Normative values of primary and secondary angles during anatomical movements could be used as a reference for future studies on UL of subjects with neurological or orthopedic pathologies.  相似文献   

13.
The purpose of the author's investigation was to examine the effect of knee joint angle on torque control of the quadriceps muscle group. In all, 12 healthy adults produced maximal voluntary contractions and submaximal torque (15, 30, and 45% MVC [maximal voluntary contraction]) at leg flexion angles of 15°, 30°, 60°, and 90° below the horizontal plane. As expected, MVC values changed with respect to joint angle with maximum torque output being greatest at 60° and least at 15°. During the submaximal tasks, participants appropriately scaled their torque output to the required targets. Absolute variability (i.e., standard deviation) of torque output was greatest at 60° and 90° knee flexion. However, relative variability as indexed by coefficient of variation (CV) decreased as joint angle increased, with the greatest CV occurring at 15°. These results are congruent with the hypothesis that joint angle influences the control of torque.  相似文献   

14.
The aim of this study was to test the effect of fatigue of the knee extensors muscles on bilateral force control accuracy, variability, and coordination in the presence and absence of visual feedback. Twenty-two young physically active subjects (18 males, 4 females) were divided into two groups and performed 210 submaximal sustained bilateral isometric contractions of knee extensors muscles with and without visual feedback. One group performed a symmetrical task—both legs were set at identical positions (60° knee flexion)—while the other group performed an asymmetrical task (60° and 30° knee flexion). We used the framework of the uncontrolled manifold hypothesis to quantify two variance components: one of them did not change total force (VUCM), while the other did (VORT). Performance of bilateral isometric contractions reduced voluntary and electrically induced force without changes in bilateral force control variability and accuracy. Bilateral force production stability and accuracy were higher in both tasks with visual feedback. Synergistic (anti-phase) structure of force control between the lower limbs occurred and the values of synergy index were higher only during the performance of the asymmetrical task with visual feedback. In addition, greater bilateral force control accuracy was observed during the performance of the asymmetrical task (with and without visual feedback), despite no differences in within-trial variability of both tasks.  相似文献   

15.
Purpose
  • •Transcranial magnetic stimulation (TMS) provides an indication of changes occurring in the corticospinal pathway. This study aimed to determine the between-day (trials 1 week apart) and within-day (trials 1 h apart) reliability of TMS and peripheral nerve stimulation.
Methods
  • •22 male participants (age 23 ± 4 years; height 1.80 ± 0.07 m; body mass 75.1 ± 11.7 kg; body mass index 23.1 ± 2.5 kg.m−2) completed 2 familiarisation sessions and 3 experimental trials (trial 2 and 3 split by 1 h). The interpolated twitch technique was used to determine TMS-assessed voluntary activations (VA-TMS) superimposed on submaximal and maximal leg extension performed on a custom-built dynamometer. Reliability was assessed using equivalence tests, systematic error, 95% limits of agreement, intraclass correlation coefficient (ICC) and coefficient of variation (CV).
Results
  • •VA-TMS was equivalent between-day (94.1 ± 4.4% versus 93.7 ± 4.9%, P < 0.01) and within-day (93.7 ± 4.9% versus 93.7 ± 4.8%, P < 0.01). Systematic error (95% limits of agreement) for VA-TMS was −0.5% (−5.1%, 4.2%) for between-day and − 0.0% (−5.3%, 5.4%) for within-day. ICC and CV values demonstrated high reliability between-day (ICC = 0.93, CV = 2.5%) and within-day (ICC = 0.92, CV = 2.9%).
Conclusion
  • •Results indicate that TMS can reliably estimate the output of the motor cortex to the knee extensors, both between-day and within-day. The findings have been used to estimate sample sizes for this technique for future research.
  相似文献   

16.
PurposeThe current study purpose was to investigate the effects of contralateral pelvic drop gait on the magnitude of the knee adduction moment (KAM) within asymptomatic individuals.Methods15 participants walked on a dual belt instrumented treadmill while segment motions and ground reaction forces were recorded. Participants completed typical gait trials and pelvic drop gait trials. The net external KAM was calculated using inverse dynamics. Peak and impulse were identified. Frontal plane hip abduction/adduction and pelvic drop were determined. Correlations and paired t-tests were used for statistical hypothesis testing (alpha = 0.05).ResultsPeak hip adduction angle reached 4° (±6°) during pelvic drop trials compared to 0° (±6°) in the typical gait trials (p < 0.05) equating to 4° of pelvic drop. KAM impulse was higher in the pelvic drop trial (0.16 Nm s/kg ± 0.04) compared to the typical gait trial (0.13 Nm s/kg ± 0.05) (p < 0.001). Peak KAM was higher in the pelvic drop trial (0.55 Nm/kg ± 0.15) compared to the typical gait trial (0.40 Nm/kg ± 0.109) (p < 0.001). Correlations between change in KAM and change in hip adduction moment and pelvic drop were r > 0.80 (p < 0.001).ConclusionPelvic drop gait increased KAM peak and impulse. Results have implications for understanding relationships between frontal plane hip movement and the knee adduction moment during gait.  相似文献   

17.
IntroductionSoccer is a complex game in which athletes perform in a dynamic 360°-environment. The results of numerous studies highlight the importance of perceptual-cognitive functions for soccer performance. Moreover, in recent years, the idea of improving sports performance through systematic perceptual-cognitive training has been increasingly investigated. Contradictory results and limitations in previous research call for further investigation. The current study aims to investigate both the relationship between perceptual-cognitive performance in a dynamic 360°-environment and soccer performance as well as the effects of perceptual-cognitive training in such an environment on soccer performance.Methods42 youth soccer players aged 11–13 years were tested at a first time of measurement (T1) on their perceptual-cognitive functions using a 360°-multiple object tracking task (360-MOT) and a visuospatial attention task. Soccer performance was assessed using an isolated, validated 360°-passing task and a small-sided game. Subsequently, participants were randomly divided into a perceptual-cognitive training group, an active control group, or a passive control group. Participants in the training group received 360-MOT training twice per week during a 5-week intervention phase, while participants in the active control group received a pseudo video training. Perceptual-cognitive and soccer-specific performance was assessed after the intervention phase at a second time of measurement (T2).ResultsAt T1, there was a significant positive relationship between 360-MOT performance and both the accuracy score in the 360°-passing task and the defensive performance score in the small-sided game. Regarding the perceptual-cognitive training intervention, the analysis at T2 revealed significant task-specific training effects but no transfer effects on perceptual-cognitive or soccer-specific performance.ConclusionsThe results highlight the relevance of perceptual-cognitive performance in a 360°-environment for soccer-specific performance but question the effects of short isolated perceptual-cognitive training interventions on soccer-specific performance.  相似文献   

18.
The mechanisms for proprioceptive changes associated with knee osteoarthritis (OA) remain elusive. Observations of proprioceptive changes in both affected knees and other joints imply more generalized mechanisms for proprioceptive impairment. However, evidence for a generalized effect remains controversial. This study examined whether joint repositioning proprioceptive deficits are localized to the diseased joint (knee) or generalized across other joints (elbow and ankle) in people with knee OA. Thirty individuals with right knee OA (17 female, 66 ± 7 [mean ± SD] years) of moderate/severe radiographic disease severity and 30 healthy asymptomatic controls of comparable age (17 female, 65 ± 8 years) performed active joint repositioning tests of the knee, ankle and elbow in randomised order in supine. Participants with knee OA had a larger relative error for joint repositioning of the knee than the controls (OA: 2.7 ± 2.1°, control: 1.6 ± 1.7°, p = .03). Relative error did not differ between groups for the ankle (OA: 2.2 ± 2.5°, control: 1.9 ± 1.3°, p = .50) or elbow (OA: 2.5 ± 3.3°, control: 2.9 ± 2.8°, p = .58). These results are consistent with a mechanism for proprioceptive change that is localized to the knee joint. This could be mediated by problems with mechanoreceptors, processing/relay of somatosensory input to higher centers, or joint-specific interference with cognitive processes by pain.  相似文献   

19.
Compound, or awkward, spine postures have been suggested as a biomechanical risk factor for low back injury. This experiment investigates the influence of head (i.e. head-on-torso) and gaze (i.e. eye-in-head) orientation on three-dimensional (3D) neck and spine range of motion (ROM) during forward flexion movements. To emulate previous experimental protocols and replicate real-world scenarios, a sample of ten young, healthy males (mean ± standard deviation: age: 20.8 ± 1.03 years, height: 180.2 ± 7.36 cm, and mass: 81.9 ± 6.47 kg) completed forward flexion movements with a constrained and unconstrained pelvis, respectively. Surface kinematics were gathered from the head and spine (C7-S1). Movements were completed under a baseline condition as well as upward, downward, leftward, and rightward head and gaze orientations. For each condition, mean neck angle and inter-segmental spine (C7T1 through L5S1) ROM were evaluated. The results demonstrate that directed head and gaze orientations can influence the ROM of specific spine regions during a forward flexion task. With leftward and rightward directed head and gaze orientations, the neck became increasingly twisted and superior thoracic segments (i.e. C7T1-T2T3) were significantly more twisted during the leftward head orientation condition than the baseline condition. With upward and downward directed head and gaze orientations, a similar effect was observed for neck and superior thoracic (i.e. C7T1-T4T5) flexion-extension. Interestingly, it was also demonstrated that changes in upward/downward head orientation can also change flexion-extension kinematics of the thoracolumbar region as well (i.e. T7T8-L1L2), suggesting that head postures requiring neck extension may also promote extension throughout these spine regions. These findings provide evidence for a functional link between changes in neck flexion-extension posture and flexion-extension movement of the thoracolumbar region of the spine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号