首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
In balance perturbations that elicit backwards reactive steps, body configuration at stepping contact is related to likelihood of balance recovery. However, less is known about the relationship between body configuration (at stepping contact) and underlying centre of mass (COM) dynamics during dynamic perturbations requiring a forward reactive step. Accordingly, the primary objective of this study was to characterize the potential relationships between body configuration and COM displacement during simulated trips. Towards determining the robustness of these relationships, trips were simulated in both baseline and increased passive joint stiffness conditions. Sixteen healthy adults participated in this study. Trips were simulated using a tether release paradigm where participants were suddenly released, necessitating a forward step (onto a force plate) to recover their balance. Trials were performed in a baseline unconstrained condition, and in a ‘corset’ condition to increase passive stiffness of the trunk and hips. In all trials, whole body kinematics and kinetics were collected. Multiple linear regression models were run to assess the relationship of body angles to COM displacement in both the anteroposterior (AP) and mediolateral (ML) planes. Regression models showed a significant association of sagittal plane body configuration to both COM displacement at stepping contact and maximum COM displacement in the AP plane. Across models, the strongest predictor was the trail leg angle. Associations were stronger in the increased passive stiffness condition (average R2 = 0.366) compared to the baseline condition (average R2 = 0.266). Poor association of body configuration to COM displacement was found in the ML plane. The significant associations observed between body configuration and COM dynamics in simulated trips supports the potential downstream application of these models in identifying individuals with impaired balance control and increased fall risk.  相似文献   

2.
The aim of this study was to examine differences in the performance of children with probable Developmental Coordination Disorder (p-DCD) and balance problems (BP) and typical developing children (TD) on a Wii Fit task and to measure the effect on balance skills after a Wii Fit intervention.Twenty-eight children with BP and 20 TD-children participated in the study. Motor performance was assessed with the Movement Assessment Battery for Children (MABC2), three subtests of the Bruininks Oseretsky Test (BOT2): Bilateral Coordination, Balance and Running Speed & Agility, and a Wii Fit ski slalom test. The TD children and half of the children in the BP group were tested before and after a 6 weeks non-intervention period. All children with BP received 6 weeks of Wii Fit intervention (with games other than the ski game) and were tested before and afterwards.Children with BP were less proficient than TD children in playing the Wii Fit ski slalom game. Training with the Wii Fit improved their motor performance. The improvement was significantly larger after intervention than after a period of non-intervention. Therefore the change cannot solely be attributed to spontaneous development or test–retest effect. Nearly all children enjoyed participation during the 6 weeks of intervention. Our study shows that Wii Fit intervention is effective and is potentially a method to support treatment of (dynamic) balance control problems in children.  相似文献   

3.
Maintaining postural equilibrium requires fast reactions and constant adjustments of the center of mass (CoM) position to prevent falls, especially when there is a sudden perturbation of the support surface. During this study, a newly developed wearable feedback system provided immediate vibrotactile clues to users based on plantar force measurement, in an attempt to reduce reaction time and CoM displacement in response to a perturbation of the floor. Ten healthy young adults participated in this study. They stood on a support surface, which suddenly moved in one of four horizontal directions (forward, backward, left and right), with the biofeedback system turned on or off. The testing sequence of the four perturbation directions and the two system conditions (turned on or off) was randomized. The resulting reaction time and CoM displacement were analysed. Results showed that the vibrotactile feedback system significantly improved balance control during translational perturbations. The positive results of this preliminary study highlight the potential of a plantar force measurement based biofeedback system in improving balance under perturbations of the support surface. Future system optimizations could facilitate its application in fall prevention in real life conditions, such as standing in buses or trains that suddenly decelerate or accelerate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号