首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prior experiments on shape constancy from novel views are inconclusive: Some show that shapes of objects can be recognized reliably from novel views, whereas others show just the opposite. Our analysis of prior results suggests that shape constancy from novel views is reliable when the object has properties that constrain its shape: The object has volumetric primitives, it has surfaces, it is symmetrical, it is composed of geons, its contours are planar, and its images provide useful topological information about its three-dimensional structure. To test the role of some of these constraints, we performed a set of experiments. Solid shapes (polyhedra) were shown on a computer monitor by means of kinetic depth effect. Experiment 1 showed that shape constancy can be reliably achieved when a polyhedron is represented by its contours (most of the constraints are present), but not when it is represented by vertices or by a polygonal line connecting the vertices in a random order (all the constraints are absent). Experiments 2 and 3 tested the role of individual constraints. Results of these experiments show that shape constancy from novel views is reliable when the object has planar contours and when the shapes of the contours together with topological information about the relations among the contours constrain the possible interpretations of the shape. Symmetry of the object and the topological stability of its image also contribute to shape constancy.  相似文献   

2.
Four experiments investigated the relation between the development of binocular vision and infant spatial perception. Experiments 1 and 2 compared monocular and binocular depth perception in 4- and 5-month-old infants. Infants in both age groups reached more consistently for the nearer of two objects under binocular viewing conditions than under monocular viewing conditions. Experiments 3 and 4 investigated whether the superiority of binocular depth perception in 4-month-olds is related to the development of sensitivity to binocular disparity. Under binocular viewing conditions in Experiment 3, infants identified as disparity-sensitive reached more consistently for the nearer object than did infants identified as disparity-insensitive. The two groups' performances did not differ under monocular viewing conditions. These results suggest that, binocularly, the disparity-sensitive infants perceived the objects' distances more accurately than did the disparity-insensitive infants. In Experiment 4, infants were habituated to an object, then presented with the same object and a novel object that differed only in size. Disparity-sensitive infants showed size constancy by recovering from habituation when viewing the novel object. Disparity-insensitive infants did not show clear evidence of size constancy. These findings suggest that the development of sensitivity to binocular disparity is accompanied by a substantial increase in the accuracy of infant spatial perception.  相似文献   

3.
The purpose of the experiments reported was to examine how novel, three-dimensional shapes are represented in long-term memory and how this might be differentially affected by monocular and binocular viewing. Three experiments were conducted. The first experiment established that slide projections of the novel objects could be recognized readily if seen in the same orientation as seen during learning. The second and third experiments examined generalization to novel depth rotations of the objects. The second experiment used slide projections of the objects. The results indicated that the representation of the objects seen during training was quite viewpoint-specific as recognition of objects in novel orientations was relatively poor. In the third experiment subjects were shown the real objects under monocular or binocular viewing. Overall, the results are consistent with a growing body of recent research showing that, at least under certain conditions, the visual system stores viewpoint-specific representations of objects.  相似文献   

4.
There are often large perceptual distortions of shapes lying on the ground plane, even in well-lit environments. These distortions occur under conditions for which the perception of location i saccurate. Four hypotheses are considered for reconciling these seemingly paradoxical results, after which 2 experiments are reported that lend further support to 1 of them--that perception of shapeand perception of location are sometimes dissociable. The 2 experiments show that whereas perception of location does not depend on whether viewing is monocular or binocular (when other distance cues are abundant), perception of shape becomes more veridical when viewing is binocular. This means that perception of shape is not fully constrained by the perceived locations of the vertices that define the shape.  相似文献   

5.
Computer-generated shapes varying on visual dimensions such as curvature, tapering, and thickness have been used to investigate identification deficits in the category-specific visual agnosia (CSVA) Patient E.L.M.. However, whether the implemented variations on each of these dimensions were perceived by novice observers as "similar amounts of change" is unknown. To estimate distance in psychophysical shape space, sets of shapes were developed using two different scaling methods--an objective method based on visual search, and a subjective method based on judgments of similarity--and a third approach that did not involve scaling. How well each method estimated psychophysical shape space was assessed by measuring the confusions within memory among the shapes. The results suggested that, although neither of the approaches perfectly reflected psychophysical shape space, subjective scaling was a better estimator of distance in psychophysical shape space than were other approaches. The number of confusions produced on each set of shapes was used to develop a new set of shapes that accurately estimated distance in psychophysical shape space. These results suggest that a combination of approaches is preferable in order to accurately estimate distance in psychophysical shape space.  相似文献   

6.
W H Ehrenstein  B J Gillam 《Perception》1998,27(12):1407-1416
If all-black figures are used, certain monocular appendages to binocular shapes are seen in depth, either nearer (when in a medial position) or further (when in a lateral position) than the binocular shape itself. These appendages also link to form subjective contours in front of the binocular shape or amodal completions behind it. These and other discoveries by von Szily, made before 1921, anticipate a number of modern findings.  相似文献   

7.
Twelve subjects provided shape and orientation judgments for a set of projectively equivalent, variously rotated rectangles under three viewing conditions—monoptic, dichoptic, and binocular—with and without the presence of a pattern mask. In the absence of the mask, partial constancy was exhibited under the first two conditions and near perfect constancy under the binocular condition. Orientation was discriminated. Presence of the mask produced projective shape matching and diminished orientation discrimination. It is argued that the site of masking was postchiasmal, and the results are related to previous work with pattern masking of projectively equivalent ellipses.  相似文献   

8.
A number of studies have resulted in the finding of a 3-D perceptual anisotropy, whereby spatial intervals oriented in depth are perceived to be smaller than physically equal intervals in the frontoparallel plane. In this experiment, we examined whether this anisotropy is scale invariant. The stimuli were L shapes created by two rods placed flat on a level grassy field, with one rod defining a frontoparallel interval, and the other, a depth interval. Observers monocularly and binocularly viewed L shapes at two scales such that they were projectively equivalent under monocular viewing. Observers judged the aspect ratio (depth/width) of each shape. Judged aspect ratio indicated a perceptual anisotropy that was invariant with scale for monocular viewing, but not for binocular viewing. When perspective is kept constant, monocular viewing results in perceptual anisotropy that is invariant across these two scales and presumably across still larger scales. This scale invariance indicates that the perception of shape under these conditions is determined independently of the perception of size.  相似文献   

9.
Experiments that compare monocular and binocular visual performance of human psychophysical Os on a variety of visual tasks are reviewed. The review attempts to include all experiments published in English in this century, excluding work on stereopsis, rivalry, and evoked potentials. The concept of probability summation as a baseline for assessing the presence of neural summation is discussed, and the assumptions of several models for estimating probability summation are considered. Experiments are classified in terms of visual task, major categories being increment detection, flicker fusion, brightness magnitude, and contour resolution. A major conclusion is that binocular performance is superior for essentially all task categories and in most cases by a magnitude greater than that predicted by appropriate probability summation models.  相似文献   

10.
Two experiments dissociated the roles of intrinsic orientation of a shape and participants’ study viewpoint in shape recognition. In Experiment 1, participants learned shapes with a rectangular background that was oriented differently from their viewpoint, and then recognized target shapes, which were created by splitting study shapes along different intrinsic axes, at different views. Results showed that recognition was quicker when the study shapes were split along the axis parallel to the orientation of the rectangular background than when they were split along the axis parallel to participants’ viewpoint. In Experiment 2, participants learned shapes without the rectangular background. The results showed that recognition was quicker when the study shape was split along the axis parallel to participants’ viewpoint. In both experiments, recognition was quicker at the study view than at a novel view. An intrinsic model of object representation and recognition was proposed to explain these findings.  相似文献   

11.
We determined visual reaction times to monocular and binocular changes in the luminance of isochromatic stimuli and to monocular and binocular changes in the color of isoluminant stimuli. Two isoluminant color changes were tested: chromatic variations along the red-green axis of Boynton's (1986) two-stage color vision model and chromatic variations along the yellow-blue axis of the same model. The results indicate a greater degree of binocular summation for luminance change than for color change. This result was largely independent of the motor component of reaction time.  相似文献   

12.
The authors used a virtual environment to investigate visual control of reaching and monocular and binocular perception of egocentric distance, size, and shape. With binocular vision, the results suggested use of disparity matching. This was tested and confirmed in the virtual environment by eliminating other information about contact of hand and target. Elimination of occlusion of hand by target destabilized monocular but not binocular performance. Because the virtual environment entails accommodation of an image beyond reach, the authors predicted overestimation of egocentric distances in the virtual relative to actual environment. This was confirmed. The authors used -2 diopter glasses to reduce the focal distance in the virtual environment. Overestimates were reduced by half. The authors conclude that calibration of perception is required for accurate feedforward reaching and that disparity matching is optimal visual information for calibration.  相似文献   

13.
Grove PM  Ono H 《Perception》1999,28(5):627-639
Two experiments were conducted to explore Gillam and Borsting's (1988, Perception 17 603-608) report that uncorrelated monocular texture facilitates stereopsis by shortening the latency to see depth in random-dot stereograms. Experiment 1 used stereograms similar, in pattern but not disparity, to Gillam and Borsting's with monocular texture present or absent. A third condition, where monocular texture was dissimilar to the binocular panels and background, was also used. We were unable to generalize the findings of Gillam and Borsting for a depth step of 6 min of arc to a larger depth step of 24 min of arc. That is, we observed no significant difference in latencies between the conditions with monocular texture absent and present at a disparity of 24 min of arc. We found latencies to be significantly longer in the monocular-texture-different condition than the monocular-texture-absent condition, however. We account for this, ad hoc, by arguing that the monocular-texture-different stereogram depicts a rare or 'accidental' visual scenario. This account was supported by the results of experiment 2 which showed that stereograms depicting accidental views yielded longer latencies than those depicting generic views. We conclude that the ecological validity of monocular texture must also be considered when assessing the effects of monocular texture on stereopsis.  相似文献   

14.
双眼竞争研究现状与展望   总被引:2,自引:0,他引:2  
双眼竞争是指当双眼所呈现的图像不一致而无法形成单一、稳定的知觉进而造成知觉动态交替变化的现象,其研究已有近200年的历史,至今仍是神经科学、心理学、生理学和临床医学中的研究热点。该文阐述了双眼竞争的概念、常用测量指标;总结了双眼竞争的特点及对双眼竞争的影响因素;讨论了双眼竞争与其他形式的多稳态知觉间的关系。行为实验、脑成像和电生理实验分别揭示了双眼竞争的早期加工模型和晚期加工模型的不足之处,Tong等人综合各方面的实验结果提出了双眼竞争的多层次–混合加工理论模型,这一模型将早期加工和晚期加工模型有机地结合起来,对于研究视觉意识的神经机制具有重要的理论指导意义。在总结已有研究的基础上,该文明确指出了双眼竞争的可应用领域及未来的研究方向  相似文献   

15.
After viewing a colored figure on a uniform gray background, an observer will see a negative afterimage after the colored figure disappears. This study shows that the shapes of afterimages vary systematically according to the shape of the adaptation stimuli, a phenomenon that could be caused only by cortical shape adaptation. In the experiments reported here, participants typically saw a hexagonal afterimage after viewing a circle and sometimes saw a circular afterimage after viewing a hexagon. When observers were adapted to rotating circles or hexagons, which produced the same circular retinal painting, they reliably reported that afterimages of circles appeared as hexagons, and vice versa. Furthermore, the fact that this effect also arose through interocular transfer confirms that a cortical process with binocular inputs must have contributed to it. This novel finding reveals that afterimage formation is determined mainly by a cortical process, not by retinal bleaching, and that rival mechanisms detect corners and curves of shapes in cortical processing.  相似文献   

16.
The effects of binocular and monocular viewing on spatial and temporal errors in one-handed catching were investigated in two experiments. The first experiment-using expert catchers-recorded more spatial errors under the monocular than under the binocular condition. No significant differences in the number of temporal errors were apparent. In a second experiment, which paradigm, relatively poor catchers were trained under both vision conditions. Its objective was to investigate whether the superior results obtained under the binocular condition in the first experiment, for the number of catches and number of spatial errors, could be attributed simply to the fact that subjects had more experience with binocular than monocular viewing. The following results occurred after a period of training (a) a significant reduction in the number of spatial errors under the monocular condition, reaching a level similar to that under the binocular condition; (b) no significant reduction in the number of spatial errors when subjects transferred from monocular to binocular viewing, and significantly more spatial errors when subjects transferred from binocular to monocular viewing; and (c) a training-sequence effect. The latter effect indicates that subjects had more benefit from training in the sequence monocular-binocular than vice versa. These findings are discussed in the context of the strategies of specificity of learning and use of multisources.  相似文献   

17.
This study was designed to explore the limitations of tau (τ) as an explanatory construct for the timing of interceptive action. This was achieved by examining the effects of environmental structure and binocular vision on the timing of the grasp in a simple one-handed catch. In two experiments, subjects were required to catch luminous balls of different diameters (4, 6, 8 and 10 cm) in a completely darkened room. In the first experiment the influence of the presence vs. absence of an environmental background structure (both under monocular viewing) was tested, and in the second experiment the influence of monocular vs. binocular vision was examined. It was found that irrespective of the presence of environmental structure, an effect of ball size occurred in the monocular viewing conditions. That is, in monocular viewing conditions the grasp was initiated and completed earlier for the larger balls as compared to the smaller ones, while in the binocular viewing condition subjects behaved in accordance with a constant time to contact strategy: no effects of ball size were found. It is concluded that under binocular viewing a binocular information source is used, while in the monocular viewing condition a lower order information source like image size or image velocity is probably involved.  相似文献   

18.
Neural bases of binocular rivalry   总被引:9,自引:0,他引:9  
During binocular rivalry, conflicting monocular images compete for access to consciousness in a stochastic, dynamical fashion. Recent human neuroimaging and psychophysical studies suggest that rivalry entails competitive interactions at multiple neural sites, including sites that retain eye-selective information. Rivalry greatly suppresses activity in the ventral pathway and attenuates visual adaptation to form and motion; nonetheless, some information about the suppressed stimulus reaches higher brain areas. Although rivalry depends on low-level inhibitory interactions, high-level excitatory influences promoting perceptual grouping and selective attention can extend the local dominance of a stimulus over space and time. Inhibitory and excitatory circuits considered within a hybrid model might account for the paradoxical properties of binocular rivalry and provide insights into the neural bases of visual awareness itself.  相似文献   

19.
González EG  Ono H  Lam E  Steinbach MJ 《Perception》2005,34(10):1181-1192
In order to include the monocular areas from the left and the right eye in the cyclopean view, the visual system displaces the occluded elements which would result in a horizontal elongation of the shape but does not occur thanks to a correction mechanism which preserves the shape. We hypothesised that this mechanism causes Kanizsa's amodal shrinkage illusion (the apparent elongation of a partially occluded square) when it is incorrectly applied by the visual system to a two-dimensional stimulus. Four experiments tested this hypothesis: (i) one-eyed observers were less susceptible to the illusion than people with normal binocular vision because, for them, the correction for shape is unnecessary; (ii) the illusion was stronger with binocular than with monocular vision since binocularity induces the visual system to correct for the shape distortion; (iii) the illusion diminished when the stimulus was rotated 90 degrees given that displacement and compression are not required for vertical occlusion; (iv) the magnitude of the illusion was a function of the width of the occluder because, as previous research has shown, the edges of a partially occluded square are less displaced the farther they are from the edges of the occluder. The data from the four experiments support our hypothesis even though no condition was able to eliminate the illusion; other possible causes are discussed.  相似文献   

20.
Adult Ss made distance bisection judgments over a surface on which the packing density of the texture elements was progressively increased along the Ss’ line of sight from one end of the surface to the other. Distance judgments were significantly different under monocular and binocular conditions of vision; however, with binocular vision, Ss did not detect the deformation in the texture on the surface. This result does not support predictions derived from Gibson, Purdy, and Lawrence (1955) concerning the role of gradients of binocular disparity in Gibson’s psychophysical theory of space perception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号