首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During adaptation, two different letter strings (each five or six letters) were presented to subjects alternately, one in green and the other in magenta. The extent to which these letter strings subsequently elicited a color aftereffect was assessed. In different experiments, the chromatic letter strings consisted of words and nonwords. The results indicated that letter strings that form English words can contingently elicit a color aftereffect. This was the case even when the words were anagrams. There was no evidence that nonword letter strings could contingently elicit such an aftereffect, even when the nonwords conformed to English orthography. The results are relevant to understanding other contingent color aftereffects (McCollough effects), illusory color noted by computer operators who work at monochrome (green or amber) displays, and the processing of text.  相似文献   

2.
It was shown that a McCollough-type color aftereffect could be induced using a pair of patterns each of which contained lines of many orientations (radial lines and concentric circles). That is, the two patterns appear to be color adapted independently. The effect could simply be a new version of the McCollough effect facilitated by a tendency to fixate the centers of the patterns. Also, the size features of the displays could be used as the basis of a spatial frequency analyzer explanation. Experimental data were used to test both of these suggestions, but very little support was found for either. It was therefore suggested that the major basis of the effect was the color adaptation of “curvature analyzers.”  相似文献   

3.
A new contingent aftereffect of apparent size can be produced in the following way. A rectangular inspection block is oriented with its long dimension horizontal (or vertical). During an inspection (induction) period of 2 min, the subject alternately grasps the horizontal and vertical dimensions of the inspection block between the thumb and forefinger of a single hand, changing from one dimension to the other every 2 sec. After the inspection period, the hori zontal dimension of a square test block feels shorter (or longer) than the vertical dimension. Inspection blocks having larger ratios of width to height produce larger aftereffects. The aftereffect persists over delays of as much as 16 min between inspection and test.  相似文献   

4.
An aftereffect of perceived texture density contingent on the color of a surrounding region is reported. In a series of experiments, participants were adapted, with fixation, to stimuli in which the relative density of two achromatic texture regions was perfectly correlated with the color presented in a surrounding region. Following adaptation, the perceived relative density of the two regions was contingent on the color of the surrounding region or of the texture elements themselves. For example, if high density on the left was correlated with a blue surround during adaptation (and high density on the right with a yellow surround), then in order for the left and right textures to appear equal in the assessment phase, denser texture was required on the left in the presence of a blue surround (and denser texture on the right in the context of a yellow surround). Contingent aftereffects were found (1) with black-and-white scatter-dot textures, (2) with luminance-balanced textures, and (3) when the texture elements, rather than the surrounds, were colored during assessment. Effect size was decreased when the elements themselves were colored, but also when spatial subportions of the surround were used for the presentation of color. The effect may be mediated by retinal color spreading (Pöppel, 1986) and appears consistent with a local associative account of contingent aftereffects, such as Barlow’s (1990) model of modifiable inhibition.  相似文献   

5.
In this study, we show that the contingent auditory motion aftereffect is strongly influenced by visual motion information. During an induction phase, participants listened to rightward-moving sounds with falling pitch alternated with leftward-moving sounds with rising pitch (or vice versa). Auditory aftereffects (i.e., a shift in the psychometric function for unimodal auditory motion perception) were bigger when a visual stimulus moved in the same direction as the sound than when no visual stimulus was presented. When the visual stimulus moved in the opposite direction, aftereffects were reversed and thus became contingent upon visual motion. When visual motion was combined with a stationary sound, no aftereffect was observed. These findings indicate that there are strong perceptual links between the visual and auditory motion-processing systems.  相似文献   

6.
Pattern correlates of perceived size were studied by obtaining category judgments of the size of 100 random forms from 40 Ss who explored the forms visually and 40 Ss who explored them factually. Comparison of the modalities and contrasts with perceived complexity were made via intercorrelations of judgments and latencies, multiple regression analyses using factored form dimensions, and correlations with original form measures. By holding area of the forms constant, it was shown that perceived size can be related to characteristics of shape.  相似文献   

7.
Transfer of the median plane slant aftereffect was assessed across changes in stimulus texture size (sine-wave grating frequency). Under binocular viewing, reliable decrements in aftereffect magnitude were observed when texture size was changed, compared with no-change control conditions. Under monocular viewing conditions, no significant aftereffects were found. The results indicate a spatial-frequency-specific component of binocular slant aftereffects.  相似文献   

8.
Adaptation to motion can produce effects on both the perceived motion (the motion aftereffect) and the position (McGraw, Whitaker, Skillen, & Chung, 2002; Nishida & Johnston, 1999; Snowden, 1998; Whitaker, McGraw, & Pearson, 1999) of a subsequently viewed test stimulus. The position shift can be interpreted as a consequence of the motion aftereffect. For example, as the motion within a stationary aperture creates the impression that the aperture is shifted in position (De Valois & De Valois, 1991; Hayes, 2000; Ramachandran & Anstis, 1990), the motion aftereffect may generate a shift in perceived position of the test pattern simply because of the illusory motion it generates on the pattern. However, here we show a different aftereffect of motion adaptation that causes a shift in the apparent position of an object even when the object appears stationary and is located several degrees from the adapted region. This position aftereffect of motion reveals a new form of motion adaptation--one that does not result in a motion aftereffect--and suggests that motion and position signals are processed independently but then interact at a higher stage of processing.  相似文献   

9.
10.
11.
12.
13.
Observers were trained to point with feedback to red and blue dots whose images had been laterally displaced in opposite directions by a reversible prism. On pretraining and posttraining trials the red and blue dots were aligned vertically in the absence of visual orientation cues. The alignment was modified by the pointing training on the posttraining trials. The colors were aligned in the direction of their prior prismatic displacement. One control experiment showed that the alignment aftereffect requires feedback during the pointing task. Another experiment in which observers pointed to the red and blue dots with opposite arms showed that pointing to both dots with the same arm was necessary to produce the alignment aftereffect. Changes in the perceived position of objects in the visual field occur when changes in perceived limb position cannot compensate for a sensorimotor conflict. Eye torsion or fixation displacements are proposed as alternative mechanisms mediating the aftereffect.  相似文献   

14.
A possible explanation of the visual spatial aftereffect following head tilt with eyes closed is that it is an outcome of a proprioceptive aftereffect of head position. If the upright head is apparently tilted then it might be expected that a vertical line in a dark room would also be apparently tilted. This explanation predicts that the direction and magnitude of the visual and proprioceptive aftereffects would correspond. The second of two experiments showed that the trends of the two aftereffects as a function of head tilt angle were different. It was concluded that the visual aftereffect cannot be explained in terms of a proprioceptive aftereffect.  相似文献   

15.
16.
17.
This paper reports a series of experiments of the perceived position of the hand in egocentric space. The experiments focused on the bias in the proprioceptively perceived position of the hand at a series of locations spanning the midline from left to right. Perceived position was tested in a matching paradigm, in which subjects indicated the perceived position of a target, which could have been either a visual stimulus or their own fingertip, by placing the index finger of the other hand in the corresponding location on the other side of a fixed surface. Both the constant error, or bias, and the variable error, or consistency of matching attempts, were measured. Experiment 1 showed that (1) there is a far-left advantage in matching tasks, such that errors in perceived position are significantly lower in extreme-left positions than in extreme-right positions, and (2) there is a strong hand-bias effect in the absence of vision, such that the perceived positions of the left and right index fingertips held in the same actual target position in fact differ significantly. Experiments 2 and 3 demonstrated that this hand-bias effect is genuinely due to errors in the perceived position of the matched hand, and not to the attempt at matching it with the other hand. These results suggest that there is no unifying representation of egocentric, proprioceptive space. Rather, separate representations appear to be maintained for each effector. The bias of these representations may reflect the motor function of that effector.  相似文献   

18.
Four reading-related, information-processing tasks were administered to right-handed blind readers of braille who differed in level of reading skill and in preference for using the right hand or the left hand when required to read text with just one hand. The tasks were letter identification, same-different matching of letters that differed in tactual similarity, short-term memory for lists of words that varied in tactual and phonological similarity, and paragraph reading with and without a concurrent memory load of digits. The results showed interactions between hand preference and the hand that was actually used to read the stimulus materials, such that left preferrers were significantly faster and more accurate with their left hands than with their right hands whereas right preferrers were slightly but usually not significantly faster with their right hands than with their left hands. In all cases, the absolute magnitude of the left-hand advantage among left preferrers was substantially larger than the right-hand advantage among right preferrers. The results suggest that encoding strategies for dealing with braille are reflected in hand preference and that such strategies operate to modify an underlying but somewhat plastic superiority of the right hemisphere for dealing with the perceptual requirements of tactual reading. These requirements are not the same as those of visual reading, leading to some differences in patterns of hemispheric specialization between readers of braille and readers of print.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号