首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relation between the approximate number system (ANS) and symbolic number processing skills remains unclear. Some theories assume that children acquire the numerical meaning of symbols by mapping them onto the preexisting ANS. Others suggest that in addition to the ANS, children also develop a separate, exact representational system for symbolic number processing. In the current study, we contribute to this debate by investigating whether the nonsymbolic number processing of kindergarteners is predictive for symbolic number processing. Results revealed no association between the accuracy of the kindergarteners on a nonsymbolic number comparison task and their performance on the symbolic comparison task six months later, suggesting that there are two distinct representational systems for the ANS and numerical symbols.  相似文献   

2.
The numerical distance effect (NDE) is one of the most robust effects in the study of numerical cognition. However, the validity and reliability of distance effects across different formats and paradigms has not been assessed. Establishing whether the distance effect is both reliable and valid has important implications for the use of this paradigm to index the processing and representation of numerical magnitude in both behavioral and neuroimaging studies. In light of this, we examine the reliability and validity of frequently employed variants (and one new variant) of the numerical comparison task: two symbolic comparison variants and two nonsymbolic comparison variants. The results of two experiments demonstrate that measures of the NDE that use nonsymbolic stimuli are far more reliable than measures of the NDE that use symbolic stimuli. With respect to correlations between measures, we find evidence that the NDE that arises using symbolic stimuli is uncorrelated with the NDE that is elicited by using nonsymbolic stimuli. Results are discussed with respect to their implications for the use of the NDE as a metric of numerical processing and representation in research with both children and adults.  相似文献   

3.
Much recent research attention has focused on understanding individual differences in the approximate number system, a cognitive system believed to underlie human mathematical competence. To date researchers have used four main indices of ANS acuity, and have typically assumed that they measure similar properties. Here we report a study which questions this assumption. We demonstrate that the numerical ratio effect has poor test–retest reliability and that it does not relate to either Weber fractions or accuracy on nonsymbolic comparison tasks. Furthermore, we show that Weber fractions follow a strongly skewed distribution and that they have lower test–retest reliability than a simple accuracy measure. We conclude by arguing that in the future researchers interested in indexing individual differences in ANS acuity should use accuracy figures, not Weber fractions or numerical ratio effects.  相似文献   

4.
Individual differences in the ability to compare and evaluate nonsymbolic numerical magnitudes—approximate number system (ANS) acuity—are emerging as an important predictor in many research areas. Unfortunately, recent empirical studies have called into question whether a historically common ANS-acuity metric—the size of the numerical distance effect (NDE size)—is an effective measure of ANS acuity. NDE size has been shown to frequently yield divergent results from other ANS-acuity metrics. Given these concerns and the measure’s past popularity, it behooves us to question whether the use of NDE size as an ANS-acuity metric is theoretically supported. This study seeks to address this gap in the literature by using modeling to test the basic assumption underpinning use of NDE size as an ANS-acuity metric: that larger NDE size indicates poorer ANS acuity. This assumption did not hold up under test. Results demonstrate that the theoretically ideal relationship between NDE size and ANS acuity is not linear, but rather resembles an inverted J-shaped distribution, with the inflection points varying based on precise NDE task methodology. Thus, depending on specific methodology and the distribution of ANS acuity in the tested population, positive, negative, or null correlations between NDE size and ANS acuity could be predicted. Moreover, peak NDE sizes would be found for near-average ANS acuities on common NDE tasks. This indicates that NDE size has limited and inconsistent utility as an ANS-acuity metric. Past results should be interpreted on a case-by-case basis, considering both specifics of the NDE task and expected ANS acuity of the sampled population.  相似文献   

5.
Research suggests that individual differences in math abilities correlate with approximate representations of quantity that are supported by a primitive Approximate Number System (ANS). However, relatively little research has addressed the direction of this association in early childhood. Here we examined the development of the ANS and math ability longitudinally in 3- to 5-year-old children. Children were observed at three time points roughly six months apart; they completed a nonsymbolic numerical comparison task that measured ANS precision and a standardized math assessment. A series of cross-lagged panel models was then estimated to explore the associations between ANS precision and math ability over time. Bidirectional associations between ANS precision and math ability emerged: Early ANS precision was related to children’s later math skills, and early math ability also significantly predicted children’s later ANS precision. Evidence for mutual enhancement over time between the ANS and symbolic math ability adds to our growing understanding of the ANS and how the ANS and math knowledge interact.  相似文献   

6.
Whether our general numerical skills and the mathematical knowledge that we acquire at school are entwined is a debated issue, which many researchers are still striving to investigate. The findings reported in the literature are actually inconsistent; some studies emphasized the existence of a relationship between the acuity of the Approximate Number System (ANS) and arithmetic competence, while some others did not observe any significant correlation. One potential explanation of the discrepancy might stem from the evaluation of the ANS itself. In the present study, we correlated two measures used to index ANS acuity with arithmetic performance. These measures were the Weber fraction (w), computed from a numerical comparison task and the coefficient of variation (CV), computed from a numerical estimation task. Arithmetic performance correlated with estimation CV but not with comparison w. We further investigated the meaning of this result by taking the relationship between w and CV into account. We expected a tight relation as both these measures are believed to assess ANS acuity. Crucially, however, w and CV did not correlate with each other. Moreover, the value of w was modulated by the congruity of the relation between numerical magnitude and non-numerical visual cues, potentially accounting for the lack of correlation between the measures. Our findings thus challenge the overuse of w to assess ANS acuity and more generally put into question the relevance of correlating this measure with arithmetic without any deeper understanding of what they are really indexing.  相似文献   

7.
It is largely admitted that processing numerosity relies on an innate Approximate Number System (ANS), and recent research consistently observed a relationship between ANS acuity and mathematical ability in childhood. However, studies assessing this relationship in adults led to contradictory results. In this study, adults with different levels of mathematical expertise performed two tasks on the same pairs of dot collections, based either on numerosity comparison or on cumulative area comparison. Number of dots and cumulative area were congruent in half of the stimuli, and incongruent in the other half. The results showed that adults with higher mathematical ability obtained lower Weber fractions in the numerical condition than participants with lower mathematical ability. Further, adults with lower mathematical ability were more affected by the interference of the continuous dimension in the numerical comparison task, whereas conversely higher-expertise adults showed stronger interference of the numerical dimension in the continuous comparison task. Finally, ANS acuity correlated with arithmetic performance. Taken together, the data suggest that individual differences in ANS acuity subsist in adulthood, and that they are related to mathematical ability.  相似文献   

8.
Previous research shows a correlation between individual differences in people's school math abilities and the accuracy with which they rapidly and nonverbally approximate how many items are in a scene. This finding is surprising because the Approximate Number System (ANS) underlying numerical estimation is shared with infants and with non-human animals who never acquire formal mathematics. However, it remains unclear whether the link between individual differences in math ability and the ANS depends on formal mathematics instruction. Earlier studies demonstrating this link tested participants only after they had received many years of mathematics education, or assessed participants' ANS acuity using tasks that required additional symbolic or arithmetic processing similar to that required in standardized math tests. To ask whether the ANS and math ability are linked early in life, we measured the ANS acuity of 200 3- to 5-year-old children using a task that did not also require symbol use or arithmetic calculation. We also measured children's math ability and vocabulary size prior to the onset of formal math instruction. We found that children's ANS acuity correlated with their math ability, even when age and verbal skills were controlled for. These findings provide evidence for a relationship between the primitive sense of number and math ability starting early in life.  相似文献   

9.
近年来,来自认知发展、比较认知、跨文化认知和神经生物学的研究证据都表明近似数量系统的存在,并且相较于一般认知能力,它更可能是决定个体数学能力差异最为重要的因素。本文综述了有关近似数量系统敏锐度与数学能力相互关系的横断研究、纵向研究、训练研究及认知神经科学的研究成果,分析了影响二者关系的因素,包括个体年龄、数学能力高低、抑制控制等,并总结了多种理论对二者间显著正相关关系的解释。未来研究需要在确定更具信效度的测量范式的基础上探讨近似数量系统与数学能力各维度的关系,以及这种相互关系背后的原因,并将研究结论运用于数学教学及计算障碍个体的干预。  相似文献   

10.
近似数量加工是对大数目物体数量在不依赖逐个数数前提下的估计。行为学研究提示高数学焦虑人群近似数量加工能力下降, 但神经机制未明。本研究探讨高数学焦虑个体近似数量加工的神经机制, 比较高低数学焦虑脑电活动的差异:(1)行为上无显著组间差异; (2)高数学焦虑组的P2p成分波幅增加; (3) δ频段ERS及β频段ERD无显著数量比例效应, 而低数学焦虑组在上述指标的数量比例效应显著。本研究为高数学焦虑人群近似数量加工能力下降提供了电生理学的证据。  相似文献   

11.
采用测量法和问卷法考察了172名小学生近似数量系统敏锐度的发展,以及抑制控制在近似数量系统敏锐度与数学能力关系中的中介效应。结果表明:(1)随着年龄增长,小学生的近似数量系统敏锐度逐渐提高;(2)近似数量系统敏锐度(负相关序列中的韦伯系数)和抑制控制均能显著正向预测小学生的数学能力;(3)抑制控制在小学生近似数量系统敏锐度(负相关序列中的韦伯系数)与数学能力的关系中起部分中介作用。  相似文献   

12.
Do children draw upon abstract representations of number when they perform approximate arithmetic operations? In this study, kindergarten children viewed animations suggesting addition of a sequence of sounds to an array of dots, and they compared the sum to a second dot array that differed from the sum by 1 of 3 ratios. Children performed this task successfully with all the signatures of adults' nonsymbolic number representations: accuracy modulated by the ratio of the sum and the comparison quantity, equal performance for within- and cross-modality tasks and for addition and comparison tasks, and performance superior to that of a matched subtraction task. The findings provide clear evidence for nonsymbolic numerical operations on abstract numerical quantities in children who have not yet been taught formal arithmetic.  相似文献   

13.
Humans possess a developmentally precocious and evolutionarily ancient approximate number system (ANS) whose sensitivity correlates with uniquely human symbolic arithmetic skills. Recent studies suggest that ANS training improves symbolic arithmetic, but such studies may engender performance expectations in their participants that in turn produce the improvement. Here, we assessed 6‐ to 8‐year‐old children's expectations about the effects of numerical and non‐numerical magnitude training, as well as states of satiety and restfulness, in the context of a study linking children's ANS practice to their improved symbolic arithmetic. We found that children did not expect gains in symbolic arithmetic after exercising the ANS, although they did expect gains in ANS acuity after training on any magnitude task. Moreover, children expected gains in symbolic arithmetic after a good night's sleep and their favourite breakfast. Thus, children's improved symbolic arithmetic after ANS training cannot be explained by their expectations about that training.  相似文献   

14.
Reasoning with non-symbolic numerosities is suggested to be rooted in the Approximate Number System (ANS) and evidence pointing to a relationship between the acuity of this system and mathematics is available. In order to use the acuity of this ANS as a screening instrument to detect future math problems, it is important to model ANS acuity over development. However, whether ANS acuity and its development have been described accurately can be questioned. Namely, different tasks were used to examine the developmental trajectory of ANS acuity and studies comparing performances on these different tasks are scarce. In the present study, we examined whether different tasks designed to measure the acuity of the ANS are comparable and lead to related ANS acuity measures (i.e., the concurrent validity of these tasks). We contrasted the change detection task, which is used in infants, with tasks that are more commonly used in older children and adults (i.e., comparison and same-different tasks). Together, our results suggest that ANS acuity measures obtained with different tasks are not related. This poses serious problems for the comparison of ANS acuity measures derived from different tasks and thus for the establishment of the developmental trajectory of ANS acuity.  相似文献   

15.
Recent research reveals a link between individual differences in mathematics achievement and performance on tasks that activate the approximate number system (ANS): a primitive cognitive system shared by diverse animal species and by humans of all ages. Here we used a brief experimental paradigm to test one causal hypothesis suggested by this relationship: activation of the ANS may enhance children’s performance of symbolic arithmetic. Over 2 experiments, children who briefly practiced tasks that engaged primitive approximate numerical quantities performed better on subsequent exact, symbolic arithmetic problems than did children given other tasks involving comparison and manipulation of non-numerical magnitudes (brightness and length). The practice effect appeared specific to mathematics, as no differences between groups were observed on a comparable sentence completion task. These results move beyond correlational research and provide evidence that the exercise of non-symbolic numerical processes can enhance children’s performance of symbolic mathematics.  相似文献   

16.
Studies have shown that numerosity‐based arithmetic training can promote arithmetic learning in typically developing children as well as children with developmental dyscalculia (DD), but the cognitive mechanism underlying this training effect remains unclear. The main aim of the current study was to examine the role of visual form perception in arithmetic improvement through an 8‐day numerosity training for DD children. Eighty DD children were selected from four Chinese primary schools. They were randomly divided into the intervention and control groups. The intervention group received training on an apple‐collecting game, whereas the control group received an English dictation task. Children's cognitive and arithmetic performances were assessed before and after training. The results showed that the intervention group showed a significant improvement in arithmetic performance, approximate number system (ANS) acuity, and visual form perception, but not in spatial processing and sentence comprehension. The control group showed no significant improvement in any cognitive ability. Mediation analysis further showed that training‐related improvement in arithmetic performance was fully mediated by the improvement in visual form perception. The results suggest that short‐term numerosity training enhances the arithmetic performance of DD children by improving their visual form perception.  相似文献   

17.
Preschool children have been proven to possess nonsymbolic approximate arithmetic skills before learning how to manipulate symbolic math and thus before any formal math instruction. It has been assumed that nonsymbolic approximate math tasks necessitate the allocation of Working Memory (WM) resources. WM has been consistently shown to be an important predictor of children's math development and achievement. The aim of our study was to uncover the specific role of WM in nonsymbolic approximate math. For this purpose, we conducted a dual‐task study with preschoolers with active phonological, visual, spatial, and central executive interference during the completion of a nonsymbolic approximate addition dot task. With regard to the role of WM, we found a clear performance breakdown in the central executive interference condition. Our findings provide insight into the underlying cognitive processes involved in storing and manipulating nonsymbolic approximate numerosities during early arithmetic.  相似文献   

18.
Humans rely on two main systems of quantification; one is nonsymbolic and involves approximate number representations (known as the approximate number system or ANS), and the other is symbolic and allows for exact calculations of number. Despite the pervasiveness of the ANS across development, recent studies with adolescents and school-aged children point to individual differences in the precision of these representations that, importantly, have been shown to relate to symbolic math competence even after controlling for general aspects of intelligence. Such findings suggest that the ANS, which humans share with nonhuman animals, interfaces specifically with a uniquely human system of formal mathematics. Other findings, however, point to a less straightforward picture, leaving open questions about the nature and ontogenetic origins of the relation between these two systems. Testing children across the preschool period, we found that ANS precision correlated with early math achievement but, critically, that this relation was nonlinear. More specifically, the correlation between ANS precision and math competence was stronger for children with lower math scores than for children with higher math scores. Taken together, our findings suggest that early-developing connections between the ANS and mathematics may be fundamentally discontinuous. Possible mechanisms underlying such nonlinearity are discussed.  相似文献   

19.
Numerical comparison is a primary measure of the acuity of children’s approximate number system. Approximate number system acuity is associated with key developmental outcomes such as symbolic number skill, standardized test scores, and even employment outcomes (Halberda, Mazzocco, & Feigenson, 2008; Parsons & Bynner, 1997). We examined the relation between children’s performance on the numerical comparison task and the number-line estimation task. It is important to characterize the relation between tasks to develop mathematics interventions that lead to transfer across tasks. We found that number-line performance was significantly predicted by nonsymbolic comparison performance for participants ranging in age from 5 to 8 years. We also evaluated, using a computational model, whether the relation between the 2 tasks could be adequately explained based on known neural correlates of number perception. Data from humans and nonhuman primates characterized neural activity corresponding to the perception of numerosities. Results of behavioral experimentation and computational modeling suggested that though neural coding of numbers predicted a correlation in participants’ performance on the 2 tasks, it could not account for all the variability in the human data. This finding was interpreted as being consistent with accounts of number-line estimation in which number-line estimation does not rely solely on participants’ numerical perception.  相似文献   

20.
In this study, the performance of typically developing 6- to 8-year-old children on an approximate number discrimination task, a symbolic comparison task, and a symbolic and nonsymbolic number line estimation task was examined. For the first time, children’s performances on these basic cognitive number processing tasks were explicitly contrasted to investigate which of them is the best predictor of their future mathematical abilities. Math achievement was measured with a timed arithmetic test and with a general curriculum-based math test to address the additional question of whether the predictive association between the basic numerical abilities and mathematics achievement is dependent on which math test is used. Results revealed that performance on both mathematics achievement tests was best predicted by how well children compared digits. In addition, an association between performance on the symbolic number line estimation task and math achievement scores for the general curriculum-based math test measuring a broader spectrum of skills was found. Together, these results emphasize the importance of learning experiences with symbols for later math abilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号