首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two monkeys (Macaca mulatta) learned a color change-detection task where two colored circles (selected from a 4-color set) were presented on a 4 × 4 invisible matrix. Following a delay, the correct response was to touch the changed colored circle. The monkeys' learning, color transfer, and delay transfer were compared to a similar experiment with pigeons. Monkeys, like pigeons (Columba livia), showed full transfer to four novel colors, and to delays as long as 6.4 s, suggesting they remembered the colors as opposed to perceptual based attentional capture process that may work at very short delays. The monkeys and pigeons were further tested to compare transfer with other dimensions. Monkeys transferred to shape and location changes, unlike the pigeons, but neither species transferred to size changes. Thus, monkeys were less restricted in their domain to detect change than pigeons, but both species learned the basic task and appear suitable for comparative studies of visual short-term memory. (PsycINFO Database Record (c) 2012 APA, all rights reserved).  相似文献   

2.
Change blindness is a phenomenon whereby changes to a stimulus are more likely go unnoticed under certain circumstances. Pigeons learned a change detection task, in which they observed sequential stimulus displays consisting of individual colors back-projected onto three response keys. The color of one response key changed during each sequence and pecks to the key that displayed the change were reinforced. Pigeons showed a change blindness effect, in that change detection accuracy was worse when there was an inter-stimulus interval interrupting the transition between consecutive stimulus displays. Birds successfully transferred to stimulus displays involving novel colors, indicating that pigeons learned a general change detection rule. Furthermore, analysis of responses to specific color combinations showed that pigeons could detect changes involving both spectral and non-spectral colors and that accuracy was better for changes involving greater differences in wavelength. These results build upon previous investigations of change blindness in both humans and pigeons and suggest that change blindness may be a general consequence of selective visual attention relevant to multiple species and stimulus dimensions.  相似文献   

3.
Change detection is commonly used to assess capacity (number of objects) of human visual short-term memory (VSTM). Comparisons with the performance of non-human animals completing similar tasks have shown similarities and differences in object-based VSTM, which is only one aspect (“what”) of memory. Another important aspect of memory, which has received less attention, is spatial short-term memory for “where” an object is in space. In this article, we show for the first time that a monkey and pigeons can be accurately trained to identify location changes, much as humans do, in change detection tasks similar to those used to test object capacity of VSTM. The subject’s task was to identify (touch/peck) an item that changed location across a brief delay. Both the monkey and pigeons showed transfer to delays longer than the training delay, to greater and smaller distance changes than in training, and to novel colors. These results are the first to demonstrate location-change detection in any non-human species and encourage comparative investigations into the nature of spatial and visual short-term memory.  相似文献   

4.
本研究考查了语言范畴是否会引起偏侧化颜色范畴知觉,并探讨了偏侧化颜色范畴知觉是语言范畴即时分类颜色还是长期与颜色联结的结果。实验中,以测量差别阈限的方法选定的渐变、相邻颜色知觉距离相当的A、B、C、D四种颜色(A、B为绿色,C、D为蓝色)为材料,以色词与颜色重组模式训练被试用4个人造词汇分别命名4种颜色,并让被试在训练前、第一次训练和第八次训练后均完成视觉搜索任务测试。经训练,原范畴内颜色(AB,CD)变成了范畴间颜色,原范畴间颜色(BC)仍为范畴间颜色。结果显示:被试在一次训练后能以新名字区分4种颜色,八次训练后掌握了4种颜色的新名字;在训练前测试中,出现了与蓝绿色相应的偏侧化颜色范畴知觉;在第八次训练后测试中,出现了与习得的语言范畴相应的偏侧化颜色范畴知觉,但在第一次训练后测试中并未出现这一效应。这些结果表明,语言范畴能引起偏侧化颜色范畴知觉,偏侧化颜色范畴知觉是语言范畴长期与颜色联结,而非即时分类颜色的结果。  相似文献   

5.
Hippocampal (HF)-lesioned pigeons display impaired homing ability when flying over familiar terrain, where they are presumably relying on a map-like representation of familiar landmarks to navigate. However, research carried out in the field precludes a direct test of whether hippocampal lesions compromise the ability of homing pigeons to navigate by familiar landmarks. To examine more thoroughly the relationship between hippocampus and landmark spatial learning, control, neostriatum-lesioned, and HF-lesioned homing pigeons were trained on two open field, laboratory, conditional discrimination tasks. One was a visual landmark array task, and the other was a room color discrimination task. For the tasks, the correct of three differently colored food bowls was determined by the spatial relationship among a group of five landmarks and room color, respectively. Intact control birds successfully learned both tasks, while neostriatum-lesioned birds successfully learned the landmark array task-the only task on which they were trained. By contrast, HF-lesioned birds successfully learned the room color task but were unable to learn the landmark array task. The data support the hypothesis that homing performance deficits observed in the field following hippocampal lesions are in part a consequence of an impairment in the ability of lesioned pigeons to use familiar visual landmarks for navigation.  相似文献   

6.
本研究以两个实验对颜色特征加工任务间的注意瞬脱效应进行探讨。实验一要求被试对首先呈现的两个色块(记忆项)与随后呈现的两个色块(检测项)是否相同进行比较。结果发现,在记忆项与检测项的SOA为220ms的条件下,记忆项加工对认知资源的持续占用使检测项的加工绩效下降。实验二含两个需相继执行的任务(T1和T2),二者均为比较同时呈现在屏幕左右两侧的两色块颜色是否相同。结果发现,对颜色特征的觉察即可产生注意瞬脱效应,其大小及时程与经典的采用字母识别任务的研究获得的注意瞬脱效应相当。上述结果表明,特征搜索的完成需有限认知资源的参与。然而,注意瞬脱过程中,特征加工与需对知觉对象细节信息进行提取的辨别任务(如字母辨别任务)在消耗认知资源的量上并无差别。  相似文献   

7.
Previous research demonstrates that implicitly learned probability information can guide visual attention. We examined whether the probability of an object changing can be implicitly learned and then used to improve change detection performance. In a series of six experiments, participants completed 120–130 training change detection trials. In four of the experiments the object that changed color was the same shape (trained shape) on every trial. Participants were not explicitly aware of this change probability manipulation and change detection performance was not improved for the trained shape versus untrained shapes. In two of the experiments, the object that changed color was always in the same general location (trained location). Although participants were not explicitly aware of the change probability, implicit knowledge of it did improve change detection performance in the trained location. These results indicate that improved change detection performance through implicitly learned change probability occurs for location but not shape.  相似文献   

8.
Three rhesus monkeys were trained and tested in a same/different task with six successive sets of 70 item pairs to an 88% accuracy on each set. Their poor initial transfer performance (55% correct) with novel stimuli improved dramatically to 85% correct following daily item changes in the training stimuli. They acquired a serial-probe-recognition (SPR) task with variable (1-6) item list lengths. This SPR acquisition, although gradual, was more rapid for the monkeys than for pigeons similarly trained. Testing with a fixed list length of four items at different delays between the last list item and the probe test item revealed changes in the serial-position function: a recency effect (last items remembered well) for 0-s delay, recency and primacy effects (first and last list items remembered well) for 1-, 2-, and 10-s delays, and only a primacy effect for the longest 30-s delay. These results are compared with similar ones from pigeons and are discussed in relation to theories of memory processing.  相似文献   

9.
Six pigeons were trained to asymptotic performance on a variable-delay matching-to-sample task in which the samples were sometimes line or color elements and sometimes line-color compounds. On compound-sample trials, the comparison stimuli were sometimes color elements and sometimes line-tilts. Sample type and delay (0, 1.5, and 4.5 sec) were varied within sessions, and sample duration (.4, 1.0, and 3.0 sec) was varied between sessions. Forgetting curves were steeper for line-tilt than for color. As sample duration increased, matching performance improved more for colors than for line-tilts, especially at delays greater than zero. Performance was better with element samples than with compound samples only on the line-tilt dimension at zero delay. Some predictions of a unitary trace growth and decay theory of pigeon short-term memory were not confirmed. A dual-code hypothesis was proposed to account for the data.  相似文献   

10.
Visual short-term memory plays a key role in guiding behavior, and individual differences in visual short-term memory capacity are strongly predictive of higher cognitive abilities. To provide a broader evolutionary context for understanding this memory system, we directly compared the behavior of pigeons and humans on a change detection task. Although pigeons had a lower storage capacity and a higher lapse rate than humans, both species stored multiple items in short-term memory and conformed to the same basic performance model. Thus, despite their very different evolutionary histories and neural architectures, pigeons and humans have functionally similar visual short-term memory systems, suggesting that the functional properties of visual short-term memory are subject to similar selective pressures across these distant species.  相似文献   

11.
The septo-hippocampal system in birds resembles that of mammals, motivating research into the function of the avian hippocampus while surprisingly little attention has been given to the septum. To investigate a possible role of the avian septum in memory, the effects of septal area lesions on a spatial working memory (SpWM) task was tested in homing pigeons. After preoperative training on an analogue eight-arm (feeders) radial maze, now sham-operated control and septal lesioned pigeons were then trained again on the same task of locating the four feeders on the test phase of a trial that were not baited during the sample phase of a trial. During the test phase of a working memory trial, septal lesioned pigeons, compared to both their own preoperative performance and the performance of the controls, required significantly more choices to locate the four baited feeders not baited during the sample phase of a trial, and they made significantly fewer correct responses to the now baited feeders on their first four choices. The results demonstrate that, like its mammalian counterpart, the avian septum plays an important role in SpWM, suggesting that at least some functional properties of the septum are evolutionarily conserved in birds and mammals.  相似文献   

12.
Rhesus monkeys were trained and tested in visual and auditory list-memory tasks with sequences of four travel pictures or four natural/environmental sounds followed by single test items. Acquisitions of the visual list-memory task are presented. Visual recency (last item) memory diminished with retention delay, and primacy (first item) memory strengthened. Capuchin monkeys, pigeons, and humans showed similar visual-memory changes. Rhesus learned an auditory memory task and showed octave generalization for some lists of notes--tonal, but not atonal, musical passages. In contrast with visual list memory, auditory primacy memory diminished with delay and auditory recency memory strengthened. Manipulations of interitem intervals, list length, and item presentation frequency revealed proactive and retroactive inhibition among items of individual auditory lists. Repeating visual items from prior lists produced interference (on nonmatching tests) revealing how far back memory extended. The possibility of using the interference function to separate familiarity vs. recollective memory processing is discussed.  相似文献   

13.
Three experiments examined the extent to which pigeons trained on a matching or oddity discrimination with one pair of colours showed transfer when tested on a new matching or oddity discrimination with a new pair of colours. Experiment 1 examined the effects of key spacing and a delay procedure and replicated previous reports that in the transfer stage subjects given the same kind of problem (Non-shift condition) in general learn more rapidly than those given the opposite problem (Shift condition). However, this difference appeared only when pigeons given matching in both training and transfer stages were compared to those shifted from oddity to matching; it did not appear in birds transferred to oddity. Transfer was not significantly affected by key spacing or by the delay.

Experiments 2 and 3 examined transfer from a non-relational conditional discrimination based on one set of colours to a subsequent matching or oddity task based on two new colours. Both a comparison between the results of Experiment 1 and 2 and the corresponding within-experiment comparison from Experiment 3 showed that transfer from conditional training to matching was as great as from prior training on matching, while prior training on oddity produced negative transfer on shift to matching. It was suggested that this negative transfer occurs because pigeons trained on oddity have not learned to override an initial bias towards the odd stimulus in an array. Whatever the correct explanation; the present results provide no support for the claim that pigeons solve matching or oddity discriminations relationally.  相似文献   

14.
Categorical coding is the tendency to respond similarly to discriminated stimuli. Past research indicates that pigeons can categorize colors according to at least three spectral regions. Two present experiments assessed the categorical coding of shapes and the existence of a higher order color category (all colors). Pigeons were trained on two independent tasks (matching-to-sample, and oddity-from-sample). One task involved red and a plus sign, the other a circle and green. On test trials one of the two comparison stimuli from one task was replaced by one of the stimuli from the other task. Differential performance based on which of the two stimuli from the other task was introduced suggested categorical coding rules. In Experiment 1 evidence for the categorical coding of sample shapes was found. Categorical color coding was also found; however, it was the comparison stimuli rather than the samples that were categorically coded. Experiment 2 replicated the categorical shape sample effect and ruled out the possibility that the particular colors used were responsible for the categorical coding of comparison stimuli. Overall, the results indicate that pigeons can develop categorical rules involving shapes and colors and that the color categories can be hierarchical.  相似文献   

15.
In a first stage of training, participants learned to associate four visual cues (two different colors and two different shapes) with verbal labels. For Group S, one label was applied to both colors and another to both shapes; for Group D, one label was applied to one color and one shape, and the other label to the other cues. When subsequently required to learn a task in which a given motor response was required to one of the colors and one of the shapes, and a different response to the other color and the other shape, Group D learned more readily than Group S. The task was designed so that the associations formed during the first stage of training could not generate differential transfer to the second stage. The results are consistent, however, with the proposal that training in which similar cues are followed by different outcomes will engage a learning process that boosts the attention paid to features that distinguish these cues.  相似文献   

16.
To examine if animals could learn action-like categorizations in a manner similar to noun-based categories, eight pigeons were trained to categorize rates of object motion. Testing 40 different objects in a go/no-go discrimination, pigeons were first trained to discriminate between fast and slow rates of object rotation around their central y-axis. They easily learned this velocity discrimination and transferred it to novel objects and rates. This discrimination also transferred to novel types of motions including the other two axes of rotation and two new translations around the display. Comparable tests with rapid and slow changes in the objects' size, color, and shape failed to support comparable transfer. This difference in discrimination transfer between motion-based and property-based changes suggests the pigeons had learned motion concept rather than one based on change per se. The results provide evidence that pigeons can acquire an understanding of motion-based actions, at least with regard to the property of object velocity. This may be similar to our use of verbs and adverbs to categorize different classes of behavior or motion (e.g., walking, jogging, or running slow vs. fast).  相似文献   

17.
通过操纵Flanker任务相对于视觉工作记忆任务的呈现位置, 探讨在视觉工作记忆编码和保持阶段, 精度负载和容量负载对注意选择的影响。行为结果发现, Flanker任务呈现位置和视觉工作记忆负载类型影响注意选择; ERP结果发现, 在保持阶段, 当搜索目标和干扰项不一致时, 负载类型影响N2成分。研究表明, 在编码阶段, 视觉工作记忆负载主要通过占用更多知觉资源降低干扰效应, 支持知觉负载理论; 而在保持阶段, 当Flanker任务位于记忆项内部时, 两类负载在工作记忆表征过程中不同的神经活动导致投入到注意选择的认知控制资源不同, 可能是两类负载影响保持阶段注意选择的机制。  相似文献   

18.
Four pigeons received conditional discrimination training in which reinforcement contingencies were related to specific combinations of color and form, but were unrelated to either color or form considered separately. During discrete-trial training, each response in the presence of two of four color-form displays produced reinforcement and terminated the trial; responding to the other two displays was never reinforced, and each such response prolonged the particular trial on which it occurred. Subsequently, the subjects received multiple-schedule training in which responding to either of the displays previously associated with reinforcement was now reinforced on a variable-interval schedule, and extinction was the schedule again correlated with the other two displays. After differential responding to the stimuli was clearly evident, intensity of the combination displays was changed in subsequent training sessions. Complex stimulus control was generally maintained across variation in intensity, although there were temporary disruptions in performance associated with onset of some of the intensity changes. Finally, a component-stimulus test revealed considerably more responding to the forms than to the colors.  相似文献   

19.
Despite their impressive cognitive abilities, avian species have shown less evidence for metacognition than mammals. We suspect that commonly used tasks such as matching to sample might be too demanding to allow metacognitive processing within birds’ working memory. Here, we examined whether pigeons could control their behavior as a function of knowledge levels on a three-item sequence learning task, a reference memory task supposedly requiring fewer working memory resources. The experiment used two types of lists differing in familiarity. One was familiar to the pigeons through repeated exposure, whereas the other was novel in every new session. In test sessions, pigeons could choose between a trial with a hint specifying the next item to peck and one with no hint. However, successful responses in trials with a hint resulted in lowered rates of primary reinforcement: .60 in the first test and .75 in the second. Results showed that two of four pigeons chose the trial with a hint significantly more often before receiving a novel list than the familiar list in the four sessions of the first test, and three did so in the second test. Impressively, one bird showed robust evidence in the very first sessions in both tests. These results suggest that pigeons may monitor their long-term knowledge states and thereby control their environment before starting to solve a task.  相似文献   

20.
In Experiment 1, one group of pigeons learned to classify a set of stimuli into the human language classes cat, flower, car, and chair (categorization); another group learned to classify the same set into arbitrary classes (pseudocategorization). Then, both groups were trained on a new categorization task and their performance compared to that of a control group that had no initial classification training. Hull's (1943) notion of secondary generalization (generalization that is not based on physical similarity but on mediating associations) predicts that categorization experience will facilitate the learning of a new categorization task, whereas pseudocategorization experience will impair it. However, in Experiment 1, performance on the new categorization task was not differently affected by prior experience. In Experiment 2, pigeons initially trained to classify a set of 48 stimuli (original training) were later trained to classify a subset of four of these stimuli using new responses (reassignment training). Then, they were tested on the 44 remaining stimuli. Performance better accorded with original than with reassignment training, indicating that categorization training did not lead to the formation of equivalence classes of stimuli, in which the equivalence relationship is mediated by secondary generalization. The lack of evidence of secondary generalization implies that our pigeons failed to meet Lea's (1984) criterion for conceptual behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号