首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present experiments, we examined whether shifts of attention selectively interfere with the maintenance of both verbal and spatial information in working memory and whether the interference produced by eye movements is due to the attention shifts that accompany them. In Experiment 1, subjects performed either a spatial or a verbal working memory task, along with a secondary task requiring fixation or a secondary task requiring shifts of attention. The results indicated that attention shifts interfered with spatial, butnot with verbal, working memory, suggesting that the interference is specific to processes within the visuospatial sketchpad. In Experiment 2, subjects performed a primary spatial working memory task, along with a secondary task requiring fixation, an eye movement, or an attention shift executed in the absence of an eye movement. The results indicated that both eye movements and attention shifts interfered with spatial working memory. Eye movements interfered to a much greater extent than shifts of attention, however, suggesting that eye movements may contribute a unique source of interference, over and above the interference produced by the attention shifts that accompany them.  相似文献   

2.
People can rehearse to-be-remembered locations either overtly, using eye movements, or covertly, using only shifts of spatial attention. The present study examined whether the effectiveness of these two strategies depends on environmental support for rehearsal. In Experiment 1, when environmental support (i.e., the array of possible locations) was present and participants could engage in overt rehearsal during retention intervals, longer intervals resulted in larger spans, whereas in Experiment 2, when support was present but participants could only engage in covert rehearsal, longer intervals resulted in smaller spans. When environmental support was absent, however, longer retention intervals resulted in smaller memory spans regardless of which rehearsal strategies were available. In Experiment 3, analyses of participants’ eye movements revealed that the presence of support increased participants’ fixations of to-be-remembered target locations more than fixations of non-targets, and that this was associated with better memory performance. Further, although the total time fixating targets increased, individual target fixations were actually briefer. Taken together, the present findings suggest that in the presence of environmental support, overt rehearsal is more effective than covert rehearsal at maintaining to-be-remembered locations in working memory, and that having more time for overt rehearsal can actually increase visuospatial memory spans.  相似文献   

3.
Previous studies have demonstrated that working memory for spatial location can be significantly disrupted by concurrent eye or limb movement (Baddeley, 1986; Smyth, Pearson, & Pendleton, 1988). Shifts in attention alone can also interfere with spatial span (Smyth & Scholey, 1994), even with no corresponding movement of the eyes or limbs (Smyth, 1996). What is not clear from these studies is how comparable is the magnitude of effect caused by different forms of spatial disrupter. Recently, it has been demonstrated that limb movements produce as much interference with spatial span as do reflexive saccades (Lawrence, Myerson, Oonk, & Abrams, 2001). In turn this has led to the hypothesis that all spatially directed movement can produce similar effects in visuo-spatial working memory. This paper reports the results of five experiments that have contrasted the effect of concurrent eye movement, limb movement, and covert attention shifts on participants' working memory for sequences of locations. All conditions involving concurrent eye movement produced significantly greater reduction in span than equivalent limb movement or covert attention shifts with eyes fixated. It is argued that these results demonstrate a crucial role for oculomotor control processes during the rehearsal of location-specific representations in working memory.  相似文献   

4.
It is well established that rote rehearsal plays a key role in serial memory for lists of verbal items. Although a great deal of research has informed us about the nature of verbal rehearsal, much less attention has been devoted to rehearsal in serial memory for visual-spatial information. By using the dot task—a visual-spatial analogue of the classical verbal serial recall task—with delayed recall, performance and eyetracking data were recorded in order to establish whether visual-spatial rehearsal could be evidenced by eye movement. The use of eye movement as a form of rehearsal is detectable (Experiment 1), and it seems to contribute to serial memory performance over and above rehearsal based on shifts of spatial attention (Experiments 1 and 2).  相似文献   

5.
When trying to remember verbal information from memory, people look at spatial locations that have been associated with visual stimuli during encoding, even when the visual stimuli are no longer present. It has been shown that such “eye movements to nothing” can influence retrieval performance for verbal information, but the mechanism underlying this functional relationship is unclear. More precisely, covert in comparison to overt shifts of attention could be sufficient to elicit the observed differences in retrieval performance. To test if covert shifts of attention explain the functional role of the looking-at-nothing phenomenon, we asked participants to remember verbal information that had been associated with a spatial location during an encoding phase. Additionally, during the retrieval phase, all participants solved an unrelated visual tracking task that appeared in either an associated (congruent) or an incongruent spatial location. Half the participants were instructed to look at the tracking task, half to shift their attention covertly (while keeping the eyes fixed). In two experiments, we found that memory retrieval depended on the location to which participants shifted their attention covertly. Thus, covert shifts of attention seem to be sufficient to cause differences in retrieval performance. The results extend the literature on the relationship between visuospatial attention, eye movements, and verbal memory retrieval and provide deep insights into the nature of the looking-at-nothing phenomenon.  相似文献   

6.
Eye movements and the integration of visual memory and visual perception   总被引:3,自引:0,他引:3  
Because visual perception has temporal extent, temporally discontinuous input must be linked in memory. Recent research has suggested that this may be accomplished by integrating the active contents of visual short-term memory (VSTM) with subsequently perceived information. In the present experiments, we explored the relationship between VSTM consolidation and maintenance and eye movements, in order to discover how attention selects the information that is to be integrated. Specifically, we addressed whether stimuli needed to be overtly attended in order to be included in the memory representation or whether covert attention was sufficient. Results demonstrated that in static displays in which the to-be-integrated information was presented in the same spatial location, VSTM consolidation proceeded independently of the eyes, since subjects made few eye movements. In dynamic displays, however, in which the to-be-integrated information was presented in different spatial locations, eye movements were directly related to task performance. We conclude that these differences are related to different encoding strategies. In the static display case, VSTM was maintained in the same spatial location as that in which it was generated. This could apparently be accomplished with covert deployments of attention. In the dynamic case, however, VSTM was generated in a location that did not overlap with one of the to-be-integrated percepts. In order to "move" the memory trace, overt shifts of attention were required.  相似文献   

7.
Three experiments examined the role of eye and limb movements in the maintenance of information in spatial working memory. In Experiment 1, reflexive saccades interfered with memory span for spatial locations but did not interfere with memory span for letters. In Experiment 2, three different types of eye movements (reflexive saccades, pro-saccades, and anti-saccades) interfered with working memory to the same extent. In all three cases, spatial working memory was much more affected than verbal working memory. The results of these two experiments suggest that eye movements interfere with spatial working memory primarily by disrupting processes localised in the visuospatial sketchpad. In Experiment 3, limb movements performed while maintaining fixation produced as much interference with spatial working memory as reflexive saccades. These results suggest that the interference produced by eye movements is not the result of their visual consequences. Rather, all spatially directed movements appear to have similar effects on visuospatial working memory.  相似文献   

8.
Auditory text presentation improves learning with pictures and texts. With sequential text–picture presentation, cognitive models of multimedia learning explain this modality effect in terms of greater visuo‐spatial working memory load with visual as compared to auditory texts. Visual texts are assumed to demand the same working memory subsystem as pictures, while auditory texts make use of an additional cognitive resource. We provide two alternative assumptions that relate to more basic processes: First, acoustic‐sensory information causes a retention advantage for auditory over visual texts which occurs no matter if a picture is presented or not. Second, eye movements during reading hamper visuo‐spatial rehearsal. Two experiments applying elementary procedures provide first evidence for these assumptions. Experiment 1 demonstrates that, regarding text recall, the auditory advantage is independent of visuo‐spatial working memory load. Experiment 2 reveals worse matrix recognition performance after reading text requiring eye movements than after listening or reading without eye movements. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Rehearsal in Spatial Working Memory: Evidence From Neuroimaging   总被引:7,自引:0,他引:7  
A variety of biological evidence has identified a frontal-parietal circuit underlying spatial working memory for visual stimuli. But the question remains, how do these neural regions accomplish the goal of maintaining location information on-line? We tested the hypothesis that the active rehearsal of spatial information in working memory is accomplished by means of focal shifts of spatial selective attention to memorized locations. Spatial selective attention has been shown to cause changes in the early visual processing of stimuli that appear in attended locations. Thus, the hypothesis of attention-based rehearsal predicts similar modulations of visual processing at memorized locations. We used functional magnetic resonance imaging to observe posterior visual activations during the performance of a spatial working memory task. In line with the hypothesis, spatial rehearsal led to enhanced activation in the early visual areas contralateral to the memorized locations.  相似文献   

10.
In the present study, we examined whether eye movements facilitate retention of visuo-spatial information in working memory. In two experiments, participants memorised the sequence of the spatial locations of six digits across a retention interval. In some conditions, participants were free to move their eyes during the retention interval, but in others they either were required to remain fixated or were instructed to move their eyes exclusively to a selection of the memorised locations. Memory performance was no better when participants were free to move their eyes during the memory interval than when they fixated a single location. Furthermore, the results demonstrated a primacy effect in the eye movement behaviour that corresponded with the memory performance. We conclude that overt eye movements do not provide a benefit over covert attention for rehearsing visuo-spatial information in working memory.  相似文献   

11.
Covert shifts of attention precede and direct overt eye movements to stimuli that are task relevant or physically salient. A growing body of evidence suggests that the learned value of perceptual stimuli strongly influences their attentional priority. For example, previously rewarded but otherwise irrelevant and inconspicuous stimuli capture covert attention involuntarily. It is unknown, however, whether stimuli also draw eye movements involuntarily as a consequence of their reward history. Here, we show that previously rewarded but currently task-irrelevant stimuli capture both attention and the eyes. Value-driven oculomotor capture was observed during unconstrained viewing, when neither eye movements nor fixations were required, and was strongly related to individual differences in visual working memory capacity. The appearance of a reward-associated stimulus came to evoke pupil dilation over the course of training, which provides physiological evidence that the stimuli that elicit value-driven capture come to serve as reward-predictive cues. These findings reveal a close coupling of value-driven attentional capture and eye movements that has broad implications for theories of attention and reward learning.  相似文献   

12.
The presence of emotional stimuli results in a central/peripheral tradeoff effect in memory: memory for central details is enhanced at the cost of peripheral items. It has been assumed that emotion-modulated differences in memory are the result of differences in attention, but this has not been tested directly. The present experiment used eye movement monitoring as an index of overt attention allocation and mediation analysis to determine whether differences in attention were related to subsequent memory. Participants viewed negative and neutral scenes surrounded by three neutral objects and were then given a recognition memory test. The results revealed evidence in support of a central/peripheral tradeoff in both attention and memory. However, contrary with previous assumptions, whereas attention partially mediated emotion-enhanced memory for central pictures, it did not explain the entire relationship. Further, although centrally presented emotional stimuli led to decreased number of eye fixations toward the periphery, these differences in viewing did not contribute to emotion-impaired memory for specific details pertaining to the periphery. These findings suggest that the differential influence of negative emotion on central versus peripheral memory may result from other cognitive influences in addition to overt visual attention or on postencoding processes.  相似文献   

13.
儿童外显视空间注意转移   总被引:3,自引:1,他引:2  
隋光远  吴燕 《心理学报》2006,38(6):841-848
采用提示范式探讨了三、六年级儿童的外显视空间注意转移。实验结果表明:内源性提示下儿童表现出显著的提示效度效应,其效度效应量在年龄组间没有显著差异;较短SOAs的外源性提示下,儿童表现出显著的提示效度效应;较长SOAs的外源性提示下儿童没有表现出返回抑制效应。用注意的过滤器理论和对象文件模型讨论了本研究的结果  相似文献   

14.
In studies of verbal memory span individual differences in speech rate have been found to predict the number of items that can be recalled in order. This is thought to happen because overt speech rate is related to the rate of internal verbal rehearsal. For spatial span there may also be an internal rehearsal system linked to overt responding, and if there is a strong analogy to be drawn between the verbal and spatial domains, then movement time between spatial targets should predict the number of spatial locations that can be recalled. In the first study reported, none of the six measures of movement time did predict spatial span, but, as expected, speech rate predicted verbal span. In addition, speech rate predicted spatial span. In a second study the use of articulatory suppression during span presentation showed that verbal span dropped, but was still predicted by speech rate. Spatial span was again predicted by the time it took to say digits rather than the time it took to make movements to spatial targets. There would not seem to be any simple analogy between the limitations on verbal span and those on spatial span. In addition, the relationship between speech rate and sequential memory performance may be more complex than previous studies have suggested.  相似文献   

15.
Under conditions of monocular viewing, eye movements tend to be directed toward stimuli in the temporal visual field. The present experiments indicate that this bias does not extend to shifts of attention under conditions in which the eyes remain fixed. Experiments 1 and 2 support this conclusion for voluntary shifts of attention, experiment 3 for involuntary shifts of attention. These results support Posner and Cohen's (1980) hypothesis that the temporal bias reflects the properties of an isolable component of the eye movement control system and extend previous dissociations of the mechanisms underlying the control of shifts of attention and eye movements.  相似文献   

16.
Three experiments that adopt an interference technique to investigate the involvement of movement in the production of a spatial code are described. Arm movements rather than the more commonly employed eye movements are used to provide initial information about the sorts of movements relevant to the code and to allow an empirical separation of the contributions of movement and attention. The results confirm the interference effects of incompatible movement on the generation of the spatial code and show that movement per se rather than attention to the movement can cause a performance decrement.  相似文献   

17.
In studies of verbal short-term memory it has been shown that the length of words to be remembered affects the size of memory span. This word-length effect is attributed to relationships between the rate of rehearsal of verbal material and the time it takes to speak the words being rehearsed. For spatial memory span there may also be an internal rehearsal system linked to overt responding, and if there is a strong analogy to be drawn between the verbal and spatial domains then movement time between spatial targets should predict the number of spatial locations that can be recalled. In the experiments reported here the time taken to move between spatial targets is varied by altering the size of targets and the distance between them. No difference between span performance on a nine-block spatial span task were found, either on immediate recall or on recall after an interval. When recall is of items from an array of 27, grouped in nine sets of three, with only one location in any set being presented on any trial, there is an effect of display size. This effect is consonant with the argument that movement time is related to spatial rehearsal, but other explanations are also possible. However, if recall in this task is scored over the nine sets rather than over the 27 items, then there is no difference between the displays. The results indicate that performance on the normal nine-block spatial-span task cannot be predicted by movement time.  相似文献   

18.
It has been suggested that maintenance in visuospatial immediate memory involves implicit motor processes that are analogous to the articulatory loop in verbal memory. An alternative account, which is explored here, is that maintenance is based on shifts of spatial attention. In four experiments, subjects recalled spatial memory span items after an interval, and in a fifth experiment, digit span was recalled after an interval. The tasks carried out during the interval included touching visual targets, repeating heard words, listening to tones from spatially sepa-rated locations, pointing to these tones, pointing to visual targets, and categorizing spatial tar-gets as being from the left or right. Spatial span recall was impaired if subjects saw visual tar-gets or heard tones, and this impairment was increased if either a motor response or a categorical response was made. Repeating words heard in different spatial locations did not impair recall, but reading visually presented words did interfere. For digit span only, the tasks involving a verbal response impaired recall. The results are interpreted within a framework in which active spatial attention is involved in maintaining spatial items in order in memory, and is interfered with by any task (visual, auditory, perceptual, motor) that also makes demands on spatial attention.  相似文献   

19.
Encoding seen movement of another human body requires visuo-spatial processing, and recall involves motor activity. However, encoding whole body movement patterns is affected differently by patterned and spatial secondary tasks, and this difference is reversed for encoding of spatial targets for movement (Smyth, Pearson, & Pendleton, 1988). The experiments reported here investigate the rehearsal of such movement patterns and their recall over unfilled and filled intervals. Performing, watching, or encoding a sequence of spatial positions while carrying a memory load of movement patterns did not affect recall of those movements, whereas performing, watching, or encoding a further set of patterned movements reduced the number recalled from the original set. However, memory for a series of locations in space was not affected by watching patterned movements during the interval, and only order information was affected by watching movement to a series of spatial locations during the interval. The results are discussed in terms of the independence of rehearsal mechanisms for spatial sequencing and movement patterns.  相似文献   

20.
Warren (1970) has claimed that there are visual facilitation effects on auditory localization in adults but not in children. He suggests that a “visual map” organizes spatial information and that considerable experience of correlated auditory and visual events is necessary before normal spatial perception is developed. In the present experiment, children in Grades 1, 4, and 7 had to identify the position, right or left, of a single tone either blindfolded or with their eyes open. Analysis of the proportion of area under the ROC curve (obtained using reaction times) in the respective conditions showed that Ss were more sensitive to auditory position when vision was available. Reaction time was also generally faster in the light. I argue that the increase in sensitivity in the light represents updating of auditory position memory by voluntary eye movement. In the dark, eye movements are subject to involuntary and unperceived drift, which would introduce noise into the eye control mechanism and hence into auditory spatial memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号