首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visible persistence duration for sine-wave gratings was measured in 9-year-old normal and specific-reading-disabled children. Experiment 1 investigated the influence of stimulus duration on visible persistence. The results demonstrated a Reading Group X Spatial Frequency interaction with disabled readers showing a smaller increase in persistence duration with increasing spatial frequency than controls. This interaction was greatest with stimulus durations longer than 80 msec. In Experiments 2a and 2b persistence was measured across a range of contrasts from .1 to .5. The stimulus durations employed were 100 msec in Experiment 2a and 300 msec in Experiment 2b. In both experiments, increasing contrast decreased persistence duration at 2 and 12 cycles per degree (c/deg) for the control group. In the specific-reading-disabled group, however, contrast had little effect on the persistence of 2-c/deg gratings in either experiment. In Experiment 2a the persistence of the 12-c/deg grating decreased with increasing contrast for both groups. In Experiment 2b contrast had significantly less effect on persistence duration in the specific-reading-disabled group, however, contrast had little effect on the persistence of 2-c/deg ratings in either experiment. In Experiment 2b contrast had significantly less effect on persistence duration in the specific-reading-disabled group than in the control group at 12 c/deg. Consequently, contrast had less effect on persistence in specific-reading-disabled children than in normal readers, especially at durations longer than the "critical duration" for each spatial frequency. Experiment 3 extended this finding to gratings with spatial frequencies of 4 and 8 c/deg. These results indicate a difference between normal and specific-reading-disabled children in cortical visible persistence. Two scores of visual processing were derived from the above experiments. On these scores the reading-disabled children were divided into Visual Disabled Readers (approximately 70%--eight subjects) and Nonvisual Disabled Readers (approximately 30%--four subjects). The percentages of disabled readers in each category remained constant when the sample size was increased to 61 normal and disabled readers.  相似文献   

2.
Previous investigations have shown that the response of spatial-frequency-specific channels in the human visual system is differentially affected by adaptation to gratings of distinct spatial frequencies and/or orientations. A study is reported of the effects of adaptation to vertical or horizontal gratings of a high or a low spatial frequency on the extent of the Brentano form of the Müller-Lyer illusion in human observers. It is shown that the illusion decreases after adaptation to vertical gratings of low spatial frequency, but seems unaffected otherwise. These results are consistent with the notion of visual channels that are spatial-frequency and orientation specific, and support the argument that the Müller-Lyer illusion may be due primarily to lower-spatial-frequency components in the Fourier spectra of the image.  相似文献   

3.
The mature visual system possesses mechanisms that analyze visual inputs into bands of spatial frequency. This analysis appears to be important to several visual capabilities. We have investigated the development of these spatial-frequency channels in young infants. Experiment 1 used a masking paradigm to test 6-week-olds, 12-week-olds, and adults. The detectability of sine wave gratings of different spatial frequencies was measured in the presence and the absence of a narrowband noise masker. The 12-week data showed that at least two spatial-frequency channels with adultlike specificity are present at 12 weeks. The 6-week data did not reveal the presence of narrowband spatial-frequency channels. Experiment 2 used a different paradigm to investigate the same issue. The detectability of gratings composed of two sine wave components was measured in 6-week-olds and adults. The results were entirely consistent with those of experiment 1. The 12-week and adult data indicated the presence of narrowband spatial-frequency channels. The 6-week data did not. The results of these experiments suggest that the manner in which pattern information is processed changes fundamentally between 6 and 12 weeks of age.  相似文献   

4.
The McCollough effect was shown to be spatial-frequency selective by Lovegrove and Over (1972) after adaptation with vertical colored square-wave gratings separated by 1 octave. Adaptation with slide-presented red and green vertical square-wave gratings separated by 1 octave failed to produce contingent color aftereffects (CAEs).However, when each of these gratings was adapted alone, strong CAEs were produced. Adaptation with vertical colored sine-wave gratings separated by 1 octave also failed to produce CAEs, but strong effects were produced by adaptation with each grating alone. By varying the spatial frequency of the test sine wave, CAEs were found to be tuned for spatial frequency at 2.85 octaves after adaptation of 4 cycles per degree (cpd) and at 2.30 octaves after adaptation of 8 cpd. Adaptation of both vertical and horizontal sine-wave gratings produced strong CAEs, with bandwidths ranging from 1.96 to 2.90 octaves and with lower adapting contrast producing weaker CAEs. These results indicate that the McCollough effect is more broadly tuned for spatial frequency than are simple adaptation effects.  相似文献   

5.
The McCollough effect was shown to be spatial-frequency selective by Lovegrove and Over (1972) after adaptation with vertical colored square-wave gratings separated by 1 octave. Adaptation with slide-presented red and green vertical square-wave gratings separated by 1 octave failed to produce contingent color aftereffects (CAEs). However, when each of these gratings was adapted alone, strong CAEs were produced. Adaptation with vertical colored sine-wave gratings separated by 1 octave also failed to produce CAEs, but strong effects were produced by adaptation with each grating alone. By varying the spatial frequency of the test sine wave, CAEs were found to be tuned for spatial frequency at 2.85 octaves after adaptation of 4 cycles per degree (cpd) and at 2.30 octaves after adaptation of 8 cpd. Adaptation of both vertical and horizontal sine-wave gratings produced strong CAEs, with bandwidths ranging from 1.96 to 2.90 octaves and with lower adapting contrast producing weaker CAEs. These results indicate that the McCollough effect is more broadly tuned for spatial frequency than are simple adaptation effects.  相似文献   

6.
A Fiorentini  N Berardi 《Perception》1984,13(6):695-708
Visual field differences have been investigated in various detection and discrimination tasks for simple sinusoidal gratings or for complex gratings composed of two sinusoids of spatial frequencies f and 3f. Sinusoidal gratings were employed to evaluate contrast sensitivity, subthreshold summation effects, aftereffects of adaptation to a high-contrast grating, and spatial-frequency discrimination. The tasks with complex gratings were detection of the 3f component in the presence of a high-contrast f component and spatial-phase discrimination. The stimuli were presented either in the left or in the right visual hemifield. The results indicate a lack of lateralization for detection and spatial-frequency discrimination of sinusoidal gratings, and for the bandwidth of subthreshold summation effects and adaptation aftereffects, whereas the detection of the 3f component in the presence of a high-contrast f component, as well as spatial-phase discrimination of f +3f gratings, show a left-field advantage. This suggests a right-hemisphere superiority in the processing of spatial phase.  相似文献   

7.
The masking of a sinusoidal test grating by contrast-modulated (CM) gratings could, in principle, be attributable to the presence of a distortion product, injected into the stimulus during some nonlinear transformation at an early level of visual processing (e.g. Nachmias, 1989 Vision Research 29 137-142). If so, CM gratings and luminance-modulated (LM) gratings of similar effective contrast and spatial frequency should mask the detection of sinusoids in a similar fashion. We compared the effects of masking by 1 cycle deg-1 CM gratings [both simple beats (8 + 9 cycles deg-1) and amplitude-modulated gratings (8 + 9 + 10 cycles deg-1)], with those of masking by 1 cycle deg-1 LM gratings of low contrast. We found that: (i) CM and low-contrast LM grating masks yielded similar spatial-frequency tuning functions around the modulation frequency of 1 cycle deg-1; (ii) low-contrast LM gratings masked the detection of test sinusoids in a highly phase-dependent fashion, while masking by CM gratings did not vary systematically with relative spatial phase. The results suggest that masking produced by CM gratings cannot simply be explained by the presence of a distortion product at the beat or modulation frequency.  相似文献   

8.
Three experiments employing the McCollough paradigm were conducted to determine the spatial-frequency content of visual imagery. In Experiment 1, large and reliable pattern-contingent color aftereffects were obtained after adaptation to visual imagery. The direction of the aftereffects indicated that subjects were adapting to higher spatial frequencies in their imagery. These results contrast with the data of Experiment 2, which demonstrate that color aftereffects obtained with adaptation to physically present stimuli are mediated by the fundamental spatial frequency components. The magnitude of the imagery-induced aftereffects in Experiment 1 equaled the magnitude of the externally induced aftereffects obtained in Experiment 2 with the same subjects. By blurring the to-be-imaged patterns (Experiment 3), the fundamental Fourier components became the salient perceptual features of the stimuli, and the direction of the imagery-induced aftereffects was reversed from that of Experiment 1, indicating that the spatial frequency content of the imagery had changed from higher to lower frequencies. Under normal viewing conditions, subjects use the higher spatial frequencies associated with the perceptually salient edges of stimuli to construct their images. The results of Experiments 1 and 3 are discussed in light of a current controversy over the nature of information representation in imagery, and it is concluded that support has been obtained for the analog model of visual imagery.  相似文献   

9.
Sinusoidal gratings of various spatial frequencies were used as masking stimuli in a detection task and a vernier acuity task. The test stimuli were 1 cycle/deg square-wave gratings. The spatial frequency of the most effective mask was 1 cycle/deg for the detection task but 3 cycles/deg for the vernier acuity task. The different masking functions for the two tasks show that the visual system analyzes the square-wave stimulus into its various spatial-frequency components. Since the test stimulus was the same for both tasks, the different masking functions may be the result of an attentional mechanism that weighs the importance of the output from various spatial-frequency analyzers. Whether the information from a particular spatial-frequency analyzer is attended or not depends upon the task the visual system must perform.  相似文献   

10.
The effect of alcohol (breath-alcohol level of 0.1%) on perceptual discrimination of low (1.5 cycles deg-1) and high (8 cycles deg-1) spatial frequencies in the left and right visual field was measured in eighteen right-handed males, in a double-blind, balanced placebo design. Discrimination thresholds for briefly (180 ms) presented sinusoidal gratings were determined by two-alternative forced-choice judgments with four interleaving psychophysical staircases providing random trial-to-trial variation of reference spatial frequency and visual field, in addition to a random (+/- 10%) jitter of reference spatial frequency. Alcohol produced overall higher discrimination thresholds but did not alter the visual-field balance: no main effect of visual field was observed, but in both placebo and alcohol conditions spatial frequency interacted with visual field in the direction predicted by the spatial-frequency hypothesis of hemispheric asymmetry in visual-information processing, with left-visual-field/right-hemisphere superiority in discrimination of low spatial frequencies and right-visual-field/left-hemisphere superiority in discrimination of high spatial frequencies.  相似文献   

11.
The visual persistence of sinusoidal gratings of varying spatial frequency and contrast was measured. It was found that the persistence of low-contrast gratings was longer than that of high-contrast stimuli for all spatial frequencies investigated. At higher contrast levels of 1 and 4 cycles deg-1 gratings, a tendency for persistence to be independent of contrast was observed. For 12 cycles deg-1 gratings, however, persistence continued to decrease with increasing contrast. These results are compared with recently published data on other temporal responses, and are discussed in terms of the different properties of sustained and transient channels.  相似文献   

12.
The relationship between local/global and high/low spatial-frequency processing in hemispheric asymmetries was explored. Subjects were required to judge the orientation of a high- or low-spatial-frequency component of a compound grating presented in the left visual field (LVF) or right visual field (RVF). In Experiment 1, attention was focused on one or the other component. A signal detection analysis indicated that sensitivity (d′) to the high-spatial-frequency target was reduced more by the presence of the low-spatial-frequency component when both were presented in the LVF rather than in the RVF. In Experiment 2, subjects determined whether a target orientation was present, independent of spatial frequency at only a single level (i.e., at the high- or low-spatial-frequency level), as opposed to both or neither level. An RVF/LH (left hemisphere) advantage was found when the decision was based on the orientation of the high-frequency component. The asymmetrical influence of visual field of presentation and spatial frequency upon sensitivity is discussed in terms of hemispheric differences in the magnitude of inhibition between spatial-frequency channels and in the role of transient channel activity to capture and direct higher order attentional processes.  相似文献   

13.
The spatial-frequency theory of vision has been supported by adaptation studies using checkerboards in which contingent color aftereffects (CAEs) were produced at fundamental frequencies oriented at 45 degrees to the edges. A replication of this study failed to produce CAEs at the orientation of either the edges or the fundamentals. Using a computer-generated display, no CAEs were produced by adaptation of a square or an oblique checkerboard. But when one type of checkerboard (4 cpd) was adapted alone, CAEs were produced on the adapted checkerboard and on sine-wave gratings aligned with the fundamental and third harmonics of the checkerboard spectrum. Adaptation of a coarser checkerboard (0.80 cpd) produced CAEs aligned with both the edges and the harmonic frequencies. With checkerboards of both frequencies, CAEs were also found on the other type of checkerboard that had not been adapted. This observation raises problems for any edge-detector theory of vision, because there was no adaptation to edges. It was concluded that spatial-frequency mechanisms are operating at both low- and high-spatial frequencies and that an edge mechanism is operative at lower frequencies. The implications of these results are assessed for other theories of spatial vision.  相似文献   

14.
The spatial-frequency theory of vision has been supported by adaptation studies using checkerboards in which contingent color aftereffects (CAEs) were produced at fundamental frequencies oriented at 45\dg to the edges. A replication of this study failed to produce CAEs at the orientation of either the edges or the fundamentals. Using a computer-generated display, no CAEs were produced by adaptation of a square or an oblique checkerboard. But when one type of checkerboard (4 cpd) was adapted alone, CAEs were produced on the adapted checkerboard and on sine-wave gratings aligned with the fundamental and third harmonics of the checkerboard spectrum. Adaptation of a coarser checkerboard (0.80 cpd) produced CAEs aligned with both the edges and the harmonic frequencies. With checkerboards of both frequencies, CAEs were also found on the other type of checkerboard that had not been adapted. This observation raises problems for any edge-detector theory of vision, because there was no adaptation to edges. It was concluded that spatial-frequency mechanisms are operating at both low- and high-spatial frequencies and that an edge mechanism is operative at lower frequencies. The implications of these results are assessed for other theories of spatial vision.  相似文献   

15.
The processing of sine-wave gratings presented to the left and right visual fields was examined in four experiments. Subjects were required either to detect the presence of a grating (Experiments 1 and 2) or to identify the spatial frequency of a grating (Experiments 3 and 4). Orthogonally to this, the stimuli were presented either at threshold levels of contrast (Experiments 1 and 3) or at suprathreshold levels (Experiments 2 and 4). Visual field and spatial frequency interacted when the task required identification of spatial frequency, but not when it required only stimulus detection. Regardless of contrast level (threshold, suprathreshold), high-frequency gratings were identified more readily in the right visual field (left hemisphere), whereas low-frequency gratings showed no visual field difference (Experiment 3) or were identified more readily in the left visual field (right hemisphere) (Experiment 4). Thus, hemispheric asymmetries in the processing of spatial frequencies depend on the task. These results support Sergent’s (1982) spatial frequency hypothesis, but only when the computational demands of the task exceed those required for the simple detection of the stimuli.  相似文献   

16.
Two experiments are reported that attempt to demonstrate a critical role played by sensory persistence on a standard perceived-duration task employing brief visual stimuli. Experiment 1 examined the effect on perceived duration of varying the spatial frequency of a target. For both 40- and 70-msec flashes, increased spatial frequency resulted in reduced estimates of perceived duration. These results were contrasted with predictions derived from cognitive processing models of duration perception. In Experiment 2, three typical types of target employed in current research (an outlined circle, a “noise”-filled circle, and a completely filled circle) were shown to differ significantly in their perceived duration and in their sensitivity to increases in physical duration. The results were discussed in terms of variable degrees of retinal persistence produced by the three types of targets. The possible implications for specific discrepancies in the literature and across-study comparisons in general were enumerated.  相似文献   

17.
Visual field effects in the discrimination of sine-wave gratings   总被引:2,自引:0,他引:2  
The time needed to decide whether the second of two successively presented sinusoidal gratings was of a higher or lower spatial frequency than the first was measured for spatial frequencies of 1, 2, 4, 8, and 12 cycles per degree (cpd) presented in either the left visual field (LVF) or right visual field (RVF). A LVF advantage was found for discriminating within the low-spatial-frequency range (i.e., 1 and 2 cpd), whereas a RVF advantage was found for discriminating within the high-spatial-frequency range (i.e., 4-12 cpd). These findings support the conclusion that hemispheric asymmetries in the processing of gratings arise when comparisons are made between the output of spatial-frequency channels.  相似文献   

18.
研究通过系列实验探讨了面孔适应不仅仅发生在形状选择性上, 也能发生在任务相关的特征上有内在关联的两个不同类别的物体间。实验1以带有明显性别倾向的物品图片作为适应刺激, 让被试对男女之间morphing程度不同的图片面孔进行性别辨别, 考察了不同适应刺激呈现时间的类别间面孔适应。结果表明适应刺激呈现时间大于50 ms时均存在类别间面孔适应效应。实验2评估了“性别”这一特征以及适应刺激形式在类别间面孔适应中所起的作用, 结果发现带有性别倾向的物品图片、相应的物品名称和性别文字(“男性”、“女性”) 3种适应刺激类型均能产生类别间适应。实验3通过操纵适应刺激上的注意负荷(高负荷、低负荷和无负荷), 探究了注意对类别间面孔适应的影响。结果表明随着注意负荷的增加, 类别间面孔适应效应减小。3个实验报告了一个新异的类别间适应后效, 证明了适应也能发生于在任务相关特征上有内在关联的两个不同类别的物体间。  相似文献   

19.
Selective attention protects cognition against intrusions of task-irrelevant stimulus attributes. This protective function was tested in coordinated psychophysical and memory experiments. Stimuli were superimposed, horizontally and vertically oriented gratings of varying spatial frequency; only one orientation was task relevant. Experiment 1 demonstrated that a task-irrelevant spatial frequency interfered with visual discrimination of the task-relevant spatial frequency. Experiment 2 adopted a two-item Sternberg task, using stimuli that had been scaled to neutralize interference at the level of vision. Despite being visually neutralized, the task-irrelevant attribute strongly influenced recognition accuracy and associated reaction times (RTs). This effect was sharply tuned, with the task-irrelevant spatial frequency having an impact only when the task-relevant spatial frequencies of the probe and study items were highly similar to one another. Model-based analyses of judgment accuracy and RT distributional properties converged on the point that the irrelevant orientation operates at an early stage in memory processing, not at a later one that supports decision making.  相似文献   

20.
The observation that physically present visual stimuli can sometimes disappear from consciousness has intrigued vision scientists for centuries. Two situations are known to cause such disappearance: stationary peripheral images and images (centrally or peripherally viewed) masked by abrupt contrast increments of stimuli in adjacent retinal areas. Both of these situations require near-image stabilization on the retina. Here, we describe a third way to remove stimuli from conscious awareness. It involves contrast decrements (CDs) of nearly stabilized images in the periphery. Unlike the Troxler effect, with sufficient CD, complete disappearance can be achieved almost instantaneously without significant adaptation periods. Unlike traditional masking effects, CD disappearance does not result in an after-image at or near the locus of stimulation. We report the results of four experiments in which some of the characteristics of this newly discovered phenomenon were examined. The results indicate that CDs produced by changes in the luminance of the target (see Experiment 2) or by changes in background luminance (see Experiment 3) result in an immediate loss of sensitivity to stimuli that would take much longer to fade with Troxler-like adaptation (see Experiment 1). However, the duration of such loss of sensitivity (approximately 2 sec) is comparable for the two paradigms. The frequency of disappearance increased with greater contour eccentricity, but disappearance duration remained fairly constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号