首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A brain model is proposed which describes its structural organization and the related functions as compartments organized in time and space. On a molecular level the negative feedback loops of clock-controlled genes are interpreted as compartments. This spatio-temporal operational principle may also work on the cellular level as glial-neuronal interactions, wherein glia have a spatio-temporal boundary setting function. The synchronization of the multi-compartmental operations of the brain is compared to the harmonization in a symphony and appears as an integrated behavior of the whole organism, defined as modes of behavior. For explanation of the principle of harmonization, an example from Schubert's Symphony No. 8 has been chosen. While harmonization refers to the synchronization of diverse systems, it seems appropriate to select the brain of a composer and the structure of musical composition as a paradigm towards a glial-neuronal brain theory. Finally, some limitations of experimental brain research are discussed and robotics are proposed as a promising alternative.  相似文献   

2.
How are our brains functionally organized to achieve adaptive behavior in a changing world? This article presents one alternative to the computer analogy that suggests brains are organized into independent modules. Evidence is reviewed that brains are in fact organized into parallel processing streams with complementary properties. Hierarchical interactions within each stream and parallel interactions between streams create coherent behavioral representations that overcome the complementary deficiencies of each stream and support unitary conscious experiences. This perspective suggests how brain design reflects the organization of the physical world with which brains interact. Examples from perception, learning, cognition and action are described, and theoretical concepts and mechanisms by which complementarity might be accomplished are presented.  相似文献   

3.
The adolescent brain   总被引:4,自引:1,他引:3  
Adolescence is a developmental period characterized by suboptimal decisions and actions that give rise to an increased incidence of unintentional injuries and violence, alcohol and drug abuse, unintended pregnancy and sexually transmitted diseases. Traditional neurobiological and cognitive explanations for adolescent behavior have failed to account for the nonlinear changes in behavior observed during adolescence, relative to childhood and adulthood. This review provides a biologically plausible conceptualization of the neural mechanisms underlying these nonlinear changes in behavior, as a heightened responsiveness to incentives while impulse control is still relatively immature during this period. Recent human imaging and animal studies provide a biological basis for this view, suggesting differential development of limbic reward systems relative to top-down control systems during adolescence relative to childhood and adulthood. This developmental pattern may be exacerbated in those adolescents with a predisposition toward risk-taking, increasing the risk for poor outcomes.  相似文献   

4.
Although the social brain hypothesis has found near-universal acceptance as the best explanation for the evolution of extensive variation in brain size among mammals, it faces two problems. First, it cannot account for grade shifts, where species or complete lineages have a very different brain size than expected based on their social organization. Second, it cannot account for the observation that species with high socio-cognitive abilities also excel in general cognition. These problems may be related. For birds and mammals, we propose to integrate the social brain hypothesis into a broader framework we call cultural intelligence, which stresses the importance of the high costs of brain tissue, general behavioral flexibility and the role of social learning in acquiring cognitive skills.  相似文献   

5.
6.
7.
Traditional beliefs about two aspects of glucose regulation in the brain have been challenged by recent findings. First, the absolute level of glucose in the brain's extracellular fluid appears to be lower than previously thought. Second, the level of glucose in brain extracellular fluid is less stable than previously believed. In vivo brain microdialysis was used, according to the method of zero net flux, to determine the basal concentration of glucose in the extracellular fluid of the striatum in awake, freely moving rats for comparison with recent hippocampal measurements. In addition, extracellular glucose levels in both the hippocampus and the striatum were measured before, during, and after behavioral testing in a hippocampus-dependent spontaneous alternation task. In the striatum, the resting extracellular glucose level was 0.71 mM, approximately 70% of the concentration measured previously in the hippocampus. Consistent with past findings, the hippocampal extracellular glucose level decreased by up to 30 +/- 4% during testing; no decrease, and in fact a small increase (9 +/- 3%), was seen in the striatum. Blood glucose measurements obtained during the same testing procedure and following administration of systemic glucose at a dose known to enhance memory in this task revealed a dissociation in glucose level fluctuations between the blood and both striatal and hippocampal extracellular fluid. These findings suggest, first, that glucose is compartmentalized within the brain and, second, that one mechanism by which administration of glucose enhances memory performance is via provision of increased glucose supply from the blood specifically to those brain areas involved in mediating that performance.  相似文献   

8.
Laine M 《Brain and language》2000,71(1):132-134
  相似文献   

9.
How do the representations underlying cognitive skills emerge? It is becoming increasingly apparent that answering this question requires integration of neural, cognitive and computational perspectives. Results from this integrative approach resonate with Piaget's central constructivist themes, thus converging on a 'neural constructivist' approach to development, which itself rests on two major research developments. First, accumulating neural evidence for developmental plasticity makes nativist proposals increasingly untenable. Instead, the evidence suggests that cortical development involves the progressive elaboration of neural circuits in which experience-dependent neural growth mechanisms act alongside intrinsic developmental processes to construct the representations underlying mature skills. Second, new research involving constructivist neural networks is elucidating the dynamic interaction between environmentally derived neural activity and developmental mechanisms. Recent neurodevelopmental studies further accord with Piaget's themes, supporting the view of human cortical development as a protracted period of hierarchical-representation construction. Combining constructive growth algorithms with the hierarchical construction of cortical regions suggests that cortical development involves a cascade of increasingly complex representations. Thus, protracted cortical development, while occurring at the expense of increased vulnerability and parental investment, appears to be a powerful and flexible strategy for constructing the representations underlying cognition.  相似文献   

10.
11.
12.
13.
If one formulates Helmholtz’s ideas about perception in terms of modern-day theories one arrives at a model of perceptual inference and learning that can explain a remarkable range of neurobiological facts. Using constructs from statistical physics it can be shown that the problems of inferring what cause our sensory inputs and learning causal regularities in the sensorium can be resolved using exactly the same principles. Furthermore, inference and learning can proceed in a biologically plausible fashion. The ensuing scheme rests on Empirical Bayes and hierarchical models of how sensory information is generated. The use of hierarchical models enables the brain to construct prior expectations in a dynamic and context-sensitive fashion. This scheme provides a principled way to understand many aspects of the brain’s organisation and responses. In this paper, we suggest that these perceptual processes are just one emergent property of systems that conform to a free-energy principle. The free-energy considered here represents a bound on the surprise inherent in any exchange with the environment, under expectations encoded by its state or configuration. A system can minimise free-energy by changing its configuration to change the way it samples the environment, or to change its expectations. These changes correspond to action and perception, respectively, and lead to an adaptive exchange with the environment that is characteristic of biological systems. This treatment implies that the system’s state and structure encode an implicit and probabilistic model of the environment. We will look at models entailed by the brain and how minimisation of free-energy can explain its dynamics and structure.  相似文献   

14.
This paper describes the neurological, language, and speech status of seven brain-damaged patients with symptoms of cortical stuttering. We compare data from our seven patients to data presented on other brain-damaged stutterers, review theories of cortical stuttering's etiology, advance alternative hypotheses about mechanisms underlying such dy sfluencies, and compare cortical stuttering to stuttering in childhood.  相似文献   

15.
16.
17.
18.
19.
On the basis of published cases and of observations made in two patients, a syndrome of acquired cluttering after brain damage in adults is delineated, and a hypothesis is presented regarding the patho-physiology of the disorder.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号