首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Many studies of visual perception have used periodic stimuli such as sine-wave gratings and checker-board patterns. It is well known that reaction time (RT) to such stimuli increases with increasing spatial frequency and decreasing contrast. While this is the case with periodic stimuli it is not clear that these relationships obtain for aperiodic stimuli such as natural scenes. A digitized image of an object (a vase) was submitted to two-dimensional Fourier analysis. Four pairs of spatial frequency band-limited images were created for each image. Each pair consisted of a normal-phase (NP) and a scrambled-phase (SP) version, with the magnitude spectrum and space-averaged luminance the same within each pair. Filter band-widths were 1 octave wide. Manual RT was measured for onset and offset of each spatially filtered image. Mean RT for SP images increased significantly with increasing spatial frequency, while no other significant differences were found with the NP images. This suggests that the temporal processing of complex, aperiodic images is influenced by the spatial frequency and contrast of local regions within the image, rather than by the space-averaged contrast of the entire image, and cannot be predicted by global estimates of contrast and spatial frequency.  相似文献   

2.
In three experiments, we investigated the relative perceived duration of a full bandwidth iniage and a set of high- and lowpass filtered images of a scene, briefly presented on a visual display unit. In Experiment 1, the various images were compared with each other, using a paired comparison method. All images were presented for 40 msec, and observers were asked to judge which of each pair of images had the longest duration. The results showed that images containing a wide spatial frequency bandwidth were judged to be of longer duration than were images of a narrower bandwidth, regardless of whether the latter were high- or lowpass filtered. In Experiment 2, a 40-msec presentation of each of the images was compared with a presentation of a probe that was 20,40, 60, or 80 msec in duration. Observers again judged which of each pair of images had the longest duration. The results were very similar to those of Experiment 1, with wide bandwidth images being judged to be of longer duration than were narrow bandwidth images. In Experiment 3, instead of comparing the various filtered versions of the image with each other, we attempted to obtain a direct measure of perceived duration by comparing a flashing LED to a 40-msec flash of a subset of the images used in the previous experiments. The observers’ task was to adjust the duration of the LED flash to match the perceived duration of each image. The results confirmed the results of the previous experiments, again indicating that wide bandwidth images are perceived to have longer phenomenal durations than narrow bandwidth images are perceived to have. These results could be predicted from previous research in the literature on the effects of spatial frequency on perceptual lag but not from research on visual persistence. It is argued that the effects described here can probably be explained best by postulating a link between perceived duration and the integration of separately processed spatial frequency information.  相似文献   

3.
The visual persistence of sinusoidal gratings of varying spatial frequency and contrast was measured. It was found that the persistence of low-contrast gratings was longer than that of high-contrast stimuli for all spatial frequencies investigated. At higher contrast levels of 1 and 4 cycles deg-1 gratings, a tendency for persistence to be independent of contrast was observed. For 12 cycles deg-1 gratings, however, persistence continued to decrease with increasing contrast. These results are compared with recently published data on other temporal responses, and are discussed in terms of the different properties of sustained and transient channels.  相似文献   

4.
Figure-ground organization of an ambiguous pattern can be manipulated by the spatial and temporal frequency content of the two regions of the pattern. Controlling for space-averaged luminance and perceived contrast, we tested patterns in which the two regions of the ambiguous pattern contained sine-wave gratings of 8, 4, 1, or 0.5 cycles per degree (cpd) undergoing on:off flicker at the rates of 0, 3.75, 7.5, or 15 Hz. For a full set of combinations of temporal frequency differences, with each spatial frequency the higher temporal frequency was seen as background for more of the viewing time. For two spatial frequency combinations, 1 and 4 cpd, and 1 and 8 cpd, tested under each of the four temporal frequencies, the lower spatial frequency region was seen as the background for more of the viewing time. When the effects of spatial and temporal frequency were set in opposition, neither was predominant in determining perceptual organization. It is suggested that figure-ground organization may parallel the sustained-transient response characteristics of the visual system.  相似文献   

5.
The human eye continuously forms images of our 3D environment using a finite and dynamically changing depth of focus. Since different objects in our environment reside at different depth planes, the resulting retinal images consist of both focused and spatially blurred objects concurrently. Here, we wanted to measure what effect such a mixed visual diet may have on the pattern of eye movements. For that, we have constructed composite stimuli, each containing an intact photograph and several progressively blurred versions of it, all arranged in a 3?×?3 square array and presented simultaneously as a single image. We have measured eye movements for 7 such composite stimuli as well as for their corresponding root mean square (RMS) contrast-equated versions to control for any potential contrast variations as a result of the blurring. We have found that when observers are presented with such arrays of blurred and nonblurred images they fixate significantly more frequently on the stimulus regions that had little or no blur at all (p?<?.001). A similar pattern of fixations was found for the RMS contrast-equated versions of the stimuli indicating that the observed distributions of fixations is not simply the result of variations in image contrasts due to spatial blurring. Further analysis revealed that, during each 5 second presentation, the image regions containing little or no spatial blur were fixated first while other regions with larger amounts of blur were fixated later, if fixated at all. The results contribute to the increasing list of stimulus parameters that affect patterns of eye movements during scene perception.  相似文献   

6.
视觉表象产生的大脑半球专门化效应   总被引:1,自引:0,他引:1  
游旭群  宋晓蕾 《心理学报》2009,41(10):911-921
采用Kosslyn单侧视野速示技术, 以英文字母图片为学习材料, 通过三个实验考察了视觉表象产生的大脑半球专门化效应。实验一提出在两种类型的视觉表象产生任务中, 有两种截然不同的加工起作用, 但却不能直接证实这两种不同加工机制的存在。实验二和实验三则进一步证实了两种表象产生任务具有不同的认知加工机制, 并表现出不同的大脑半球专门化效应。上述研究表明: 大脑两半球均参与产生视觉心理表象, 但分工不同, 并表现出不同的单侧化效应: 大脑左半球通过运用类别空间关系产生表象更有效, 大脑右半球运用数量空间关系产生表象更有效。结果进一步拓展了Kosslyn关于视觉空间关系加工的大脑半球专门化观点。  相似文献   

7.
Brady N  Field DJ 《Perception》2000,29(9):1041-1055
The visual system employs a gain control mechanism in the cortical coding of contrast whereby the response of each cell is normalised by the integrated activity of neighbouring cells. While restricted in space, the normalisation pool is broadly tuned for spatial frequency and orientation, so that a cell's response is adapted by stimuli which fall outside its 'classical' receptive field. Various functions have been attributed to divisive gain control: in this paper we consider whether this output nonlinearity serves to increase the information carrying capacity of the neural code. 46 natural scenes were analysed with the use of oriented, frequency-tuned filters whose bandwidths were chosen to match those of mammalian striate cortical cells. The images were logarithmically transformed so that the filters responded to a luminance ratio or contrast. In the first study, the response of each filter was calibrated relative to its response to a grating stimulus, and local image contrast was expressed in terms of the familiar Michelson metric. We found that the distribution of contrasts in natural images is highly kurtotic, peaking at low values and having a long exponential tail. There is considerable variability in local contrast, both within and between images. In the second study we compared the distribution of response activity before and after implementing contrast normalisation, and noted two major changes. Response variability, both within and between scenes, is reduced by normalisation, and the entropy of the response distribution is increased after normalisation, indicating a more efficient transfer of information.  相似文献   

8.
V Morison  A Slater 《Perception》1985,14(3):345-348
A preferential-looking procedure was used to investigate newborns' responses to square-wave gratings varying in spatial frequency and contrast. A preliminary study confirmed that the gratings used in the experiment were suprathreshold. In the experiment newborns' preference for a grating of 0.1 cycle deg-1 within the peak contrast sensitivity range was examined. Reduction in the contrast of this grating led to a transfer of the preference to a high-contrast grating of the same space-averaged luminance with a spatial frequency outside this range (0.42 cycle deg-1). The findings are discussed with reference to the role of the contrast sensitivity function in pattern preferences of newborns: it is suggested that contrast and spatial frequency interact in determining pattern preferences.  相似文献   

9.
Recent data require nonlinear spatial summation processes in models for detection of spatially periodic and aperiodic patterns. Contrast matching experiments with suprathreshold grating and spot patterns suggest that nonlinear models may be required for suprathreshold contrast data, but differences between the psychophysical tasks used with periodic and aperiodic patterns make comparison difficult. A series of experiments are reported in which subjects matched local brightnesses and brightness differences within single cycles of grating patterns. This task closely resembles the matching task in classical contrast experiments with aperiodic stimuli, allowing comparison of the data from the two types of experiments. Brightnesses within a 5-cycle/degree (c/deg) sinusoidal grating were largely unaffected by addition of a large 15-c/deg modulation component in either of two phases, in spite of the resulting large change in local luminances within the pattern. As at threshold, complex models are required in order to account for apparent differences between spatial interactions within periodic and aperiodic patterns.  相似文献   

10.
Viewing a distorted face induces large aftereffects in the appearance of an undistorted face. The authors examined the processes underlying this adaptation by comparing how selective the aftereffects are for different dimensions of the images including size, spatial frequency content, contrast, and color. Face aftereffects had weaker selectivity for changes in the size, contrast, or color of the images and stronger selectivity for changes in contrast polarity or spatial frequency. This pattern could arise if the adaptation is contingent on the perceived similarity of the stimuli as faces. Consistent with this, changing contrast polarity or spatial frequency had larger effects on the perceived identity of a face, and aftereffects were also selective for different individual faces. These results suggest that part of the sensitivity changes underlying the adaptation may arise at visual levels closely associated with the representation of faces.  相似文献   

11.
Danilova MV  Mollon JD 《Perception》2003,32(4):395-414
The visual system is known to contain hard-wired mechanisms that compare the values of a given stimulus attribute at adjacent positions in the visual field; but how are comparisons performed when the stimuli are not adjacent? We ask empirically how well a human observer can compare two stimuli that are separated in the visual field. For the stimulus attributes of spatial frequency, contrast, and orientation, we have measured discrimination thresholds as a function of the spatial separation of the discriminanda. The three attributes were studied in separate experiments, but in all cases the target stimuli were briefly presented Gabor patches. The Gabor patches lay on an imaginary circle, which was centred on the fixation point and had a radius of 5 deg of visual angle. Our psychophysical procedures were designed to ensure that the subject actively compared the two stimuli on each presentation, rather than referring just one stimulus to a stored template or criterion. For the cases of spatial frequency and contrast, there was no systematic effect of spatial separation up to 10 deg. We conclude that the subject's judgment does not depend on discontinuity detectors in the early visual system but on more central codes that represent the two stimuli individually. In the case of orientation discrimination, two naive subjects performed as in the cases of spatial frequency and contrast; but two highly trained subjects showed a systematic increase of threshold with spatial separation, suggesting that they were exploiting a distal mechanism designed to detect the parallelism or non-parallelism of contours.  相似文献   

12.
DB, the first blindsight case to be tested extensively (Weiskrantz, 1986) has demonstrated the ability to detect and discriminate a range of visual stimuli presented within his perimetrically blind visual field defect. In a temporal two alternative forced choice (2AFC) detection experiment we have investigated the limits of DB's detection ability within his field defect. Blind field performance was compared to his sighted field performance and to an age-matched control group (n=6). DB reliably detected the presence of a small (2 degrees ), low contrast (7%), 4.6c/ degrees Gabor patch with the same space-averaged luminance as the background presented within his blind field but performed at chance levels at the same eccentricity (11.3 degrees ) within his sighted field. Investigation of detection as a function of stimulus contrast revealed DB's ability to detect the presence of an 8% contrast stimulus within his blind field, compared to 12% in his sighted field. No significant difference in detection performance between DB's sighted field and the performance of six age-matched control participants suggests poor sighted field performance does not account for the results. Monocular testing also rules out differences between the eyes as an explanation, suggesting that DB demonstrates superior detection for certain stimuli within his visual field defect compared to normal vision.  相似文献   

13.
In three experiments we measured reaction times (RTs) and error rates in identifying the global structure of spatially filtered stimuli whose spatial-frequency content was selected by means of three types of 2-D isotropic filters (Butterworth of order 2, Butterworth of order 10, and a filters with total or partial Gaussian spectral profile). In each experiment, low-pass (LP), bandpass (BP), and high-pass (HP) filtered stimuli, with nine centre or cut-off spatial frequencies, were used. Irrespective of the type of filter, the experimental results showed that: (a) RTs to stimuli with low spatial frequencies were shorter than those to stimuli with medium or high spatial frequencies, (b) RTs to LP filtered stimuli were nearly constant, but they increased in a nonmonotonic way with the filter centre spatial frequency in BP filtered stimuli and with the filter cut-off frequency in HP filtered stimuli, and (c) the identification of the global pattern occurred with all visible stimuli used, including BP and HP images without low spatial frequencies. To remove the possible influence of the energy, a fourth experiment was conducted with Gaussian filtered stimuli of equal contrast power (c(rms) = 0.065). Similar results to those described above were found for stimuli with spatial-frequency content higher than 2 cycles deg(-1). A model of isotropic first-order visual channels collecting the stimulus spectral energy in all orientations explains the RT data. A subsequent second-order nonlinear amplitude demodulation process, applied to the output of the most energetic first-order channel, could explain the perception of global structure of each spatially filtered stimulus, including images lacking low spatial frequencies.  相似文献   

14.
A microcomputer-based instrument is described that provides visual stimuli for a CRT display and collects and processes response data. The system produces a variety of visual patterns to facilitate the study of the properties of visual neurons of several different animals. The visual patterns include drifting sinusoidal or bar gratings, contrast reversal gratings, and diffuse light. By means of a keypad, the experimenter can select the visual pattern and its parameters, such as depth of modulation, spatial frequency, initial spatial phase, temporal frequency, and rotation angle.  相似文献   

15.
In three experiments, we investigated the relative perceived duration of a full bandwidth image and a set of high- and lowpass filtered images of a scene, briefly presented on a visual display unit. In Experiment 1, the various images were compared with each other, using a paired comparison method. All images were presented for 40 msec, and observers were asked to judge which of each pair of images had the longest duration. The results showed that images containing a wide spatial frequency bandwidth were judged to be of longer duration than were images of a narrower bandwidth, regardless of whether the latter were high- or lowpass filtered. In Experiment 2, a 40-msec presentation of each of the images was compared with a presentation of a probe that was 20, 40, 60, or 80 msec in duration. Observers again judged which of each pair of images had the longest duration. The results were very similar to those of Experiment 1, with wide bandwidth images being judged to be of longer duration than were narrow bandwidth images. In Experiment 3, instead of comparing the various filtered versions of the image with each other, we attempted to obtain a direct measure of perceived duration by comparing a flashing LED to a 40-msec flash of a subset of the images used in the previous experiments. The observers' task was to adjust the duration of the LED flash to match the perceived duration of each image.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
This paper explores the ways in which combinations of image degradations affect discrimination. Nine experiments are described that examine the discriminability of visual images that are degraded with three types of information reducing transformations: random punctate visual interference, lowpass spatial frequency filtering, and local area (i.e., block) averaging. The results of these experiments characterize a powerful visual ability to discriminate highly degraded stimuli unless that ability is severely challenged by relatively high levels of random visual interference. Discriminative commutativity of the orders in which the other two degradations are imposed is demonstrated. That is, the order in which the degradations are applied does not affect the final discriminative outcome. This result is in contrast to predictions from relevant mathematics and direct examination of the images produced by both orders of degradation. The commutativity is attributed to the particularly strong effect of the low-pass spatial frequency filtering degradation on the discrimination process. This study also demonstrates that combinations of degradations in a discrimination task always result in a reduction in performance, and never in the improvement that has been reported for recognition. This difference is attributed to the fact that form discrimination is mediated mainly by local features and high-frequency spatial components, whereas recognition is mediated mainly by global features and low-frequency spatial components.  相似文献   

17.
Voluntary covert attention selects relevant sensory information for prioritized processing. The behavioral and neural consequences of such selection have been extensively documented, but its phenomenology has received little empirical investigation. Involuntary attention increases perceived spatial frequency (Gobell & Carrasco, 2005), but involuntary attention can differ from voluntary attention in its effects on performance in tasks mediated by spatial resolution (Yeshurun, Montagna, & Carrasco, 2008). Therefore, we ask whether voluntary attention affects the subjective appearance of spatial frequency—a fundamental dimension of visual perception underlying spatial resolution. We used a demanding rapid serial visual presentation task to direct voluntary attention and measured perceived spatial frequency at the attended and unattended locations. Attention increased the perceived spatial frequency of suprathreshold stimuli and also improved performance on a concurrent orientation discrimination task. In the control experiment, we ruled out response bias as an alternative account by using a lengthened interstimulus interval, which allows observers to disengage attention from the cued location. In contrast to the main experiment, the observers showed neither increased perceived spatial frequency nor improved orientation discrimination at the attended location. Thus, this study establishes that voluntary attention increases perceived spatial frequency. This phenomenological consequence links behavioral and neurophysiological studies on the effects of attention.  相似文献   

18.
Three experiments are described which relate to models of infant visual preferences, and to the ways in which preferences can be modified or created by habituation. In all experiments newborn babies were used as subjects. In Experiments equated 1 and 2 infants were presented with pairs of stimuli that were equated for contour density but which differed in spatial frequency components. The preferences obtained give support to Banks and Salapatek's (1981, Journal of Experimental Child Psychology, 31, 1-45) model of infant preferences which predicts that the maximally preferred stimulus will be that which contains high amplitude spatial frequency components falling within the age group's peak contrast sensitivity. In Experiment 3 an infant-controlled habituation procedure was used. The results obtained suggest that strong natural preferences based on the infants' peak contrast sensitivity cannot be changed by habituating infants either to the preferred or to the nonpreferred member of a stimulus pair. However, where no prior preference exists between two stimuli that are perceptually highly discriminable, very strong novelty preferences are found after habituating newborns to either stimulus. The results suggest that the contrast sensitivity model can be a powerful predictor of preferential looking in newborns, and in addition are further evidence that preferences based on experience can be found from birth.  相似文献   

19.
A longstanding issue is whether perception and mental imagery share similar cognitive and neural mechanisms. To cast further light on this problem, we compared the effects of real and mentally generated visual stimuli on simple reaction time (RT). In five experiments, we tested the effects of difference in luminance, contrast, spatial frequency, motion, and orientation. With the intriguing exception of spatial frequency, in all other tasks perception and imagery showed qualitatively similar effects. An increase in luminance, contrast, and visual motion yielded a decrease in RT for both visually presented and imagined stimuli. In contrast, gratings of low spatial frequency were responded to more quickly than those of higher spatial frequency only for visually presented stimuli. Thus, the present study shows that basic dependent variables exert similar effects on visual RT either when retinally presented or when imagined. Of course, this evidence does not necessarily imply analogous mechanisms for perception and imagery, and a note of caution in such respect is suggested by the large difference in RT between the two operations. However, the present results undoubtedly provide support for some overlap between the structural representation of perception and imagery.  相似文献   

20.
Visual perception can be influenced by top-down processes related to the observer’s goals and expectations, as well as by bottom-up processes related to low-level stimulus attributes, such as luminance, contrast, and spatial frequency. When using different physical stimuli across psychological conditions, one faces the problem of disentangling the contributions of low- and high-level factors. Here, we make available the SHINE (spectrum, histogram, and intensity normalization and equalization) toolbox for MATLAB, which we have found useful for controlling a number of image properties separately or simultaneously. The toolbox features functions for specifying the (rotational average of the) Fourier amplitude spectra, for normalizing and scaling mean luminance and contrast, and for exact histogram specification optimized for perceptual visual quality. SHINE can thus be employed for parametrically modifying a number of image properties or for equating them across stimuli to minimize potential low-level confounds in studies on higher level processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号