首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of focal attention on the coordination dynamics in a bimanual circle drawing task was investigated. Six right-handed and seven left-handed subjects performed bimanual circling movements, in two modes of coordination, symmetrical or asymmetrical. The frequency of movement was scaled by an auditory metronome from 1.50 Hz to 3.00 Hz in 7 steps. On each trial, subjects were required to attend either to the dominant hand, to a neutral position, or to the nondominant hand.The uniformity of the relative tangential angle was lower in asymmetrical than in symmetrical conditions, but was not influenced by the direction of attention. In the asymmetrical mode, shifts in RTA relations, suggestive of loss of stability, were evident as the movement frequency was increased. Typically, these shifts were mediated by distortions of the trajectory of the nondominant limb. When the nondominant hand was the focus of attention, movements of this hand were more circular, and temporal variability was reduced, at the cost of a greater deviation from the target frequency. Movements of the dominant hand were not affected by the direction of attention. The findings show that although directed attention acts to modify the coordination dynamics, it does so primarily at the level of the individual hands, rather then in terms of the relation between them.  相似文献   

2.
The consistency and coordination of release parameters in ball-throwing movements were investigated. The authors used a newly developed index of coordination for release parameters (ICRP) that quantifies the degree of improvement of performance consistency caused by compensatory relationships among parameters (i.e., not caused by consistency of parameters). Eight participants practiced for 150 trials, with the nondominant hand, a ball-throwing task aimed at a stationary target. The magnitude of the ball-release velocity vector, among release parameters, as well as the performance was found to become consistent with practice. The ICRP score suggested that the release parameters were complementarily coordinated with one another, and that the coordination improved with practice. Those results indicate that compensatory relationships among varying release parameters contribute to reducing the variability of performance in a ball-throwing task whose goal is accuracy.  相似文献   

3.
The consistency and coordination of release parameters in ball-throwing movements were investigated. The authors used a newly developed index of coordination for release parameters (ICRP) that quantifies the degree of improvement of performance consistency caused by compensatory relationships among parameters (i.e., not caused by consistency of parameters). Eight participants practiced for 150 trials, with the nondominant hand, a ball-throwing task aimed at a stationary target. The magnitude of the ball-release velocity vector, among release parameters, as well as the performance was found to become consistent with practice. The ICRP score suggested that the release parameters were complementarily coordinated with one another, and that the coordination improved with practice. Those results indicate that compensatory relationships among varying release parameters contribute to reducing the variability of performance in a ball-throwing task whose goal is accuracy.  相似文献   

4.
Kinematic adaptations in multijoint rhythmic drawing movements were investigated under unexpected perturbations in friction levels between stylus and writing surface. Changes in coupling and stability properties were assessed as a function of practice level by applying perturbations to subjects' dominant and nondominant limbs. Under nonperturbation and perturbation conditions, joint motions of right-handed subjects were highly coupled in the nondominant limb and uncoupled in the dominant limb. Stability analyses of the kinematic responses in the phase plane showed a relatively higher intrajoint resistance to perturbations in the nondominant limb as compared to the dominant limb for the elbow joint. indicating a decrease in global joint stiffness with practice. These changes in joint coupling and stiffness with practice were not observed for left-handed subjects. In addition, the stability to perturbations in the end-effector (stylus) kinematics was related to the amount of joint coupling in the nondominant limb, whereas in the dominant limb there existed no such coupling. It was concluded that (a) practice changes the responses to perturbations from anatomically specific early in practice to task-specific late in practice, and (b) this shift is related to the stability in the joint phase-plane dynamics, degree of coupling between joint angles, and the decoupling of the dynamics in the intrinsic and extrinsic control spaces.  相似文献   

5.
Between-arm performance asymmetry can be seen in different arm movements requiring specific interjoint coordination to generate the desired hand trajectory. In the current investigation, we assessed between-arm asymmetry of shoulder-elbow coordination and its stability in the performance of circular movements. Participants were 16 healthy right-handed university students. The task consisted of performing cyclic circular movements with either the dominant right arm or the nondominant left arm at movement frequencies ranging from 40% of maximum to maximum frequency in steps of 15%. Kinematic analysis of shoulder and elbow motions was performed through an optoelectronic system in the three-dimensional space. Results showed that as movement frequency increased circularity of left arm movements diminished, taking an elliptical shape, becoming significantly different from the right arm at higher movement frequencies. Shoulder-elbow coordination was found to be asymmetric between the two arms across movement frequencies, with lower shoulder-elbow angle coefficients and higher relative phase for the left compared to the right arm. Results also revealed greater variability of left arm movements in all variables assessed, an outcome observed from low to high movement frequencies. From these findings, we propose that specialization of the left cerebral hemisphere for motor control resides in its higher capacity to generate appropriate and stable interjoint coordination leading to the planned hand trajectory.  相似文献   

6.
An experiment was conducted to examine the control of force and timing in bimanual finger tapping. Participants were trained to produce both unimanual (left or right hand) and bimanual finger-tapping sequences with a peak force of 200 g and an intertap interval (ITI) of 400 ms. During practice, visual force feedback was provided pertaining to the hand performing the unimanual tapping sequences and to either the dominant or the nondominant hand in the bimanual tapping sequences. After practice, the participants produced the learned unimanual and bimanual tapping sequences in the absence of feedback. In those trials the force produced by the dominant (right) hand was significantly larger than that produced by the nondominant (left) hand, in the absence of a significant difference between the ITIs produced by both hands. Furthermore, after unilateral feedback had been provided of the force produced by the nondominant hand, the force output of the dominant hand was significantly more variable than that of the nondominant hand. In contrast, after feedback had been provided of the force produced by the dominant hand, the variability of the force outputs of the two hands did not differ significantly. These results were discussed in the light of both neurophysiological and anatomical findings, and were interpreted to imply that the control of timing (in bimanual tasks) may be more tightly coupled in the motor system than the control of force.  相似文献   

7.
Accurate timing of limb displacement is crucial for effective motor control. The authors examined the effects of movement velocity, duration, direction, added mass, and auditory cueing on timing, spatial, and trajectory variability of single- and multijoint rhythmic movements. During single-joint movements, increased velocity decreased timing and spatial variability, whereas increased movement duration increased timing variability but decreased spatial variability. For multijoint movements, regardless of condition, increasing velocity decreased joint timing, spatial, and trajectory variability, but all hand variabilities were unaffected by velocity, duration, load, or direction. Timing, spatial, and trajectory variability was greater at the shoulder compared with the elbow and minimal at the hand, supporting the notion that reaching movements are planned in hand space as opposed to joint space.  相似文献   

8.
Chow JY  Davids K  Button C  Koh M 《Acta psychologica》2008,127(1):163-176
This study investigated how novices re-organized motor system degrees of freedom when practicing a multi-articular discrete kicking task. Four male participants practiced a soccer chipping task to seven different target positions over 12 sessions for 4 weeks. Data from each participant indicated changes in degrees of freedom involvement as a function of practice. Further, each participant showed a different progression of change in levels of joint involvement for hip, knee and ankle in the kicking limb. Cross-correlations between joints in the kicking limb also showed different pathways of coupling and de-coupling with practice. Performance outcome scores improved and variability of intra-limb coordination decreased as a consequence of practice for all participants. Angle-angle plots also showed qualitative changes in intra-limb coordination between early and late practice sessions. Evidence suggested that foot velocity at ball contact was functionally manipulated by participants when kicking to target positions with varying height and distance constraints. Referencing data to a model of learning [Newell, K. M. (1985). Coordination, control and skill. In: Goodman, D., Franks, I., & Wilberg, R.B. (Eds.), Differing perspectives in motor learning, memory, and control. Amsterdam: North-Holland, pp. 295-317] determined that progression through different stages of learning may not be sequential and could alternate between learning stages. The present study highlighted individual differences in acquisition of coordination and control of joint motion even under similar task constraints, showing how degeneracy in movement systems facilitates learning.  相似文献   

9.
The objective of this study was to investigate the coordination of a whole-body task (basketball free-throw) in which success in performance outcome can be achieved through a manifold of combinations of postural and movement trajectory configurations. Participants were healthy men (19–24 years) with a range of skill levels that were tested for the accuracy of 50 basketball free-throws with both their dominant and non-dominant hand. The trial-to-trial variance in release parameters as well as postural stability of the shooter and synchronization of postural movement and ball release were strong predictors of performance, with non-elite shooters having a higher mean and variability of center-of-mass (COM) speed at the time of ball release. The synchronization between the time of peak COM and the time of ball release increased as a function of skill level and hand dominance, with the better performers releasing the ball more closely to the time of COM peak height. These findings reveal how, in addition to successfully controlling the trial-to-trial variability along the solution manifold of release parameters, the relative importance of the coordination of postural control and ball release properties on shooting success changes as a function of skill level.  相似文献   

10.
The effect of concurrent physical and cognitive demands on arm motor control is poorly understood. This exploratory study compared movement kinematics in a repetitive high-precision pipetting task with and without additional concurrent cognitive demands in the form of instructions necessary to locate the correct target tube. Thirty-five healthy female subjects performed a standardized pipetting task, transferring liquid repeatedly from one pick-up tube to different target tubes. In the reference condition, lights indicated the target tube in each movement cycle, while the target tube had to be deciphered from a row and column number on a computer screen in the condition with additional cognitive demands. Kinematics of the dominant arm was assessed using the central tendency and variability of the pipette-tip end-point trajectory and joint kinematics properties of the shoulder and elbow. Movements slowed down (lower velocities and higher area under the movement curves) and trajectory variability increased in the condition with additional cognitive demands, but there were no changes in the kinematics properties such as joint range of motion, times of acceleration and deceleration (as indicated by the time to peak velocity), average angles, or phase relationships between angle and angular velocity of shoulder or elbow movements between the two conditions. Further, there were also no differences in the size or structure of variability of the shoulder and elbow joint angles, suggesting that subjects could maintain the motor repertoire unaltered in the presence of these specific additional cognitive demands. Further studies should address motor control at other levels of concurrent cognitive demands, and with motor tasks that are less automated than the pipetting task used in the present study, so as to gain an increased understanding of the effect of concurrent cognitive demands for other activities of relevance to daily life.  相似文献   

11.
Reading-disabled children often have accompanying deficits in motor coordination. Rather than assuming impairment of a shared neural mechanism, we conjecture that coordination difficulties that undermine normal speech would also undermine development of phonological awareness, which is necessary for reading fluency. Nonimpaired readers who vary in fluency, therefore, should also covary in coordination. Reliable interrelationships between phonological decoding skills and the speed and variability of sequentially tapping the fingers of one hand (either dominant or nondominant) were, indeed, found for college undergraduates. Reading measures that do not emphasize phonological decoding did not show the same connection. Characterizing phonological decoding as a skill and the long-term consequences of failure to master that skill suggest that it could benefit from practice even in high-literacy populations.  相似文献   

12.
《Human movement science》1999,18(2-3):281-305
Eight right-handed participants performed a bilateral circle tracing task in symmetric or asymmetric patterns. Circle tracing was performed in synchrony with an auditory metronome and a visual display at, or comfortably below, each participant's transition frequency. The visual display consisted of a row of five light-emitting diodes (LEDs) arranged between the two circles (hands). Bimanual pattern stability was examined under conditions where the direction of illumination of the visual stimuli was compatible or incompatible with the hand direction. Symmetric patterns maintained stability for both movement rates whereas asymmetric patterns exhibited loss of stability at the transition frequency. Spontaneous reversals in circling direction occurred predominantly (94%) through the nondominant hand. Laterality effects were also evident in the aspect ratio (circularity of trajectories) and limb frequency variation, particularly in asymmetric patterns at the transition frequency. Compatibility between the stimulus direction and circling direction served to: stabilise symmetric patterns; stabilise asymmetric patterns by delaying the onset of transition; and stabilise the individual limb dynamics when the direction of the dominant side was compatible with the visual stimulus. The data from this multisegmental task lend support to a model of coupled oscillators whereby the coupling strength is anisotropic between the dominant and nondominant side, and lend further support for an account of manual asymmetries by way of a preferential perception–action coupling through the dominant limb. PsycINFO Classification: 2320  相似文献   

13.
The primary goal of this study was to examine the relations between limb control and handedness in adults. Participants were categorized as left or right handed for analyses using the Edinburgh Handedness Inventory. Three-dimensional recordings were made of each arm on two reach-to-place tasks: adults reached to a ball and placed it into the opening of a toy (fitting task), or reached to a Cheerio inside a cup, which they placed on a designated mark after each trial (cup task). We hypothesized that limb control and handedness were related, and we predicted that we would observe side differences favoring the dominant limb based on the dynamic dominance hypothesis of motor lateralization. Specifically, we predicted that the dominant limb would be straighter and smoother on both tasks compared with the nondominant limb (i.e., right arm in right-handers and left arm in left-handers). Our results only partially supported these predictions for right-handers, but not for left-handers. When differences between hands were observed, the right hand was favored regardless of handedness group. Our findings suggest that left-handers are not reversed right-handers when compared on interlimb kinematics for reach-to-place tasks, and reaffirm that task selection is critical when evaluating manual asymmetries.  相似文献   

14.
The number of joint motions available in the upper extremity provides for multiple solutions to the coordination of a motor task. Making use of these abundant joint motions provides for task flexibility. Controlling bimanual movements poses another level of complexity because of possible tradeoffs between coordination within a limb and coordination between the limbs. We examined how flexible patterns of joint coordination were used to stabilize the hand's path when drawing a circle independently compared to a bimanual pattern. Across-trial variance of joint motions was partitioned into two components: goal-equivalent variance (GEV), representing variance of joint motions consistent with a stable hand path and non-goal-equivalent variance (NGEV) representing variance of joint motions that led to deviations of the hand's path. GEV was higher than NGEV in both unimanual and bimanual drawing, with one exception. Both GEV and NGEV, related to control of the individual hands' motion, decreased when engaged in the bimanual compared to unimanual drawing. Moreover, NGEV, leading to variability in the vectorial distance between the hands, was higher when the two hands drew circles in a bimanually asymmetric vs. symmetric pattern, consistent with reported differences in the relative phasing of the two hands. Our results suggest that the nervous system controls the individual hands' motions by separate intra-limb synergies during both unimanual and bimanual drawing, and superimposes an additional synergy to achieve stable relative motion of the two hands during bimanual drawing.  相似文献   

15.
According to the coordination dynamics perspective, one can characterize the learning of novel relative phase patterns as the formation of a stable attractor in the coordination landscape of the order parameter relative phase. The authors examined 18 participants' learning and transfer of a 90 degrees relative phase pattern and a 0.6-joint-amplitude ratio between the elbow and wrist. Variability in the relative phasing and the joint amplitude ratio between the elbow and wrist decreased with practice. Positive transfer of the 90 degrees relative phase pattern was not dependent on the learning arm (dominant or nondominant). Positive transfer of the joint amplitude ratio was dependent on the learning arm and the direction of transfer. The results demonstrated that relative phase is an order parameter that characterizes the coordination dynamics of learning and transferring multijoint arm movements, and they provide preliminary evidence that joint amplitude ratios act as order parameters in the learning and transfer of multijoint arm movements.  相似文献   

16.
Human subjects performed simple flexion and extension movements about the elbow in a visual step-tracking paradigm. Movements were self-terminated. Subjects were instructed to increase movement velocity while maintaining end-point accuracy during practice. The effects of practice on the pattern and variability of EMG activity of the biceps and triceps muscles were studied. Initial movements were performed using reciprocal phasic activation of agonist and antagonist muscles as indicated by surface EMGs. With practice, increases in movement speed were associated with larger agonist and antagonist bursts and an earlier onset of the antagonist burst. Decreased duration of the premovement antagonist silence was also observed during practice.

Decreases in variability of movements during practice were not accompanied by equivalent decreases in variability of the associated EMGs. Surprisingly, both agonist and antagonist EMGs were more variable in faster, practiced movements. The combined agonist-antagonist EMG variability depended on both movement speed and trajectory variability. Lower variability in movements in the presence of greater variability in the related EMGs occurred because of linked variations in agonist and antagonist muscle activities. Variations in the first agonist burst were often compensated for by associated variations in the antagonist and late agonist bursts. These linked variations maintained the limb trajectory relatively constant in spite of large variations in the first agonist burst. Modifications to impulse-variability models are therefore needed to explain compensations for variability in accelerative impulses (produced by the first agonist burst) by linked variations in impulses for deceleration (produced by the antagonist and late agonist bursts).  相似文献   

17.
Human subjects performed simple flexion and extension movements about the elbow in a visual step-tracking paradigm. Movements were self-terminated. Subjects were instructed to increase movement velocity while maintaining end-point accuracy during practice. The effects of practice on the pattern and variability of EMG activity of the biceps and triceps muscles were studied. Initial movements were performed using reciprocal phasic activation of agonist and antagonist muscles as indicated by surface EMGs. With practice, increases in movement speed were associated with larger agonist and antagonist bursts and an earlier onset of the antagonist burst. Decreased duration of the premovement antagonist silence was also observed during practice. Decreases in variability of movements during practice were not accompanied by equivalent decreases in variability of the associated EMGs. Surprisingly, both agonist and antagonist EMGs were more variable in faster, practiced movements. The combined agonist-antagonist EMG variability depended on both movement speed and trajectory variability. Lower variability in movements in the presence of greater variability in the related EMGs occurred because of linked variations in agonist and antagonist muscle activities. Variations in the first agonist burst were often compensated for by associated variations in the antagonist and late agonist bursts. These linked variations maintained the limb trajectory relatively constant in spite of large variations in the first agonist burst. Modifications to impulse-variability models are therefore needed to explain compensations for variability in accelerative impulses (produced by the first agonist burst) by linked variations in impulses for deceleration (produced by the antagonist and late agonist bursts).  相似文献   

18.
The interference effect between Grooved Pegboard task with either hand and the executive task of cued verbal random number generation was investigated. 24 normal right-handed subjects performed each task under separate (single-task) and concurrent (dual-task) conditions. Articulatory suppression was required as an additional secondary task during pegboard performance. Analysis indicated an unambiguous distinction between the two hands. Comparisons of single-task and dual-task conditions showed an asymmetrical pattern of unidirectional interference with no practice effects during pegboard performance. Concurrent performance with nondominant hand but not the dominant hand of random number generation performance became continuously slower. There was no effect of divided attention on pegboard performance. Findings support the idea that the nondominant hand on the pegboard and random number tasks draw from the same processing resources but that for the executive aspect random number generation is more sensitive to changes in allocation of attentional resources.  相似文献   

19.
An active kinesthetic-to-visual matching task was performed by 15 children aged 5-10 years and five young adults. The task required the participants to locate the target visually while performing center-out drawing movements to the located visual targets in the absence of visual feedback of hand/pen motion. Movement time (MT), terminal end-point position error (EPE), and initial directional error (IDE) were measured. The general finding is that the end-point error variability, representing the joint localization probability distributions for proprioceptive localization of the hand and visual localization of the target, was largest for the youngest children, but did not differ from one another for the older age groups. The localization distributions, as characterized by principal component analysis, showed that both errors in extent and direction were significantly larger in the youngest children. These error distributions could not be accounted for by initial localization errors prior to movement onset in the children. It is likely that at least some portion of the increased movement variability seen during sensorimotor development in young children can be attributed not only to immature control mechanisms per se, but also to partial, not yet stable, forward representations for hand localization which are used for movement perception, planning, and control.  相似文献   

20.
The present study tested the conscious-control theory of the relationship between stress and performance. Performers under stress conditions consciously attempted to control their movements, disrupting the automaticity of control. Twenty-two male subjects (11 in Experiment 1 and 11 in Experiment 2) performed an underhand ball-throwing task using the non-dominant hand. The inter-trial variability of two kinematic measures was analyzed, namely arm-joint coordination during the throw and hand position at release (release point). Experiment 1 confirmed the validity of regarding these variability measures as indices of automaticity, as they did not vary in spite of resource shortage induced by a dual-task paradigm. In Experiment 2, in which stress led to a detriment in performance, the variability of joint coordination increased, whereas the release point became more fixed. These findings imply that throwing performance is impaired when the coordination is disrupted as a result of inflexible movement executed by conscious control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号