首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent demonstrations of "reconsolidation" suggest that memories can be modified when they are reactivated. Reconsolidation has been observed in human procedural memory and in implicit memory in infants. This study asks whether episodic memory undergoes reconsolidation. College students learned a list of objects on Day 1. On Day 2, they received a reminder or not, and then learned a second list. Memory for List 1 was tested immediately on Day 2 (Experiment 2) or on Day 3 (Experiment 1). Although the reminder did not moderate the number of items recalled from List 1 on either day, subjects who received a reminder incorrectly intermixed items from the second list when recalling List 1 on Day 3. Experiment 2 showed that this effect does not occur immediately and thus is time-dependent. The reminder did not affect memory for List 2 on Day 3 (Experiment 3), demonstrating that modification occurred only for the original memory (List 1). The study demonstrates the crucial role of reminders for the modification of episodic memory, that reconsolidation of episodic memory is time-dependent, and, in contrast to previous reconsolidation findings, that reconsolidation is also a constructive process, one that supports the incorporation of new information in memory.  相似文献   

2.
Ample evidence suggests that consolidated memories, upon their retrieval, enter a labile state, in which they might be susceptible to change. It has been proposed that memory labilization allows for the integration of relevant information in the established memory trace (memory updating). Memory labilization and reconsolidation do not necessarily occur when a memory is being reactivated, but only when there is something to be learned during memory retrieval (prediction error). Thus, updating of a fear memory trace should not occur under retrieval conditions in which the outcome is fully predictable (no prediction error). Here, we addressed this issue, using a human differential fear conditioning procedure, by eliminating the very possibility of reinforcement of the reminder cue. A previously established fear memory (picture-shock pairings) was reactivated with shock-electrodes attached (Propranolol group, n=18) or unattached (Propranolol No-Shock Expectation group, n=19). We additionally tested a placebo-control group with the shock-electrodes attached (Placebo group, n=18). Reconsolidation was not triggered when nothing could be learned during the reminder trial, as noradrenergic blockade did not affect expression of the fear memory 24h later in the Propranolol No-Shock Expectation group. Only when the outcome of the retrieval cue was not fully predictable, propranolol, contrary to placebo, reduced the startle fear response and prevented the return of fear (reinstatement) the following day. In line with previous studies, skin conductance response and shock expectancies were not affected by propranolol. Remarkably, a double dissociation emerged between the emotional (startle response) and more cognitive expression (expectancies, SCR) of the fear memory. Our findings have important implications for reconsolidation blockade as treatment strategy for emotional disorders. First, fear reducing procedures that target the emotional component of fear memory do not necessarily affect the cognitive component and vice versa. Second, mere retrieval of the fear memory is not sufficient to induce its labilization and reconsolidation.  相似文献   

3.
A consolidated memory recalled by a reminder enters a vulnerability phase (labilization), followed by a process of stabilization (reconsolidation). Several authors have suggested that the labilization of the consolidated memory makes the incorporation of new information possible. Here, we demonstrate updating in the framework of memory declarative reconsolidation in humans by giving an opportune verbal instruction. Volunteers learn an association between five cue-syllables (L1) and their respective response-syllables. Twenty-four hours later, the paired-associate verbal memory is labilized by exposing the subjects to the reminder, and then they receive the verbal Instruction of adding three new cue-response syllables (INFO) with their respective responses to the former list of five. The new information is incorporated into the single former L1-memory and both INFO and L1 are successfully retrieved on the third day. However, when the Instruction is not preceded by a proper reminder, or when the instruction omits the order of adding the INFO into the former L1-memory, we observed interference in retrieval of both the original and the new information, suggesting that they are encoded independently and coexist as separate memories.  相似文献   

4.
There is strong evidence that reactivation of a memory returns it to a labile state, initiating a restabilization process termed reconsolidation, which allows for updating of the memory. In this study we investigated reactivation-dependent updating using a new positively motivated spatial task in rodents that was designed specifically to model a human list-learning paradigm. On Day 1, rats were trained to run to three feeders (List 1) for rewards. On Day 2, rats were trained to run to three different feeders (List 2) in either the same (Reminder condition) or a different (No Reminder condition) experimental context than on Day 1. On Day 3, rats were cued to recall List 1. Rats in the Reminder condition made significantly more visits to List 2 feeders (intrusions) during List 1 recall than rats in the No Reminder condition, indicating that the reminder triggered reactivation and allowed integration of List 2 items into List 1. This reminder effect was selective for the reactivated List 1 memory, as no intrusions occurred when List 2 was recalled on Day 3. No intrusions occurred when retrieval took place in a different context from the one used at encoding, indicating that the expression of the updated memory is dependent upon the retrieval context. Finally, the level of intrusions was highest when retrieval took place immediately after List 2 learning, and generally declined when retrieval occurred 1-4 h later, indicating that the List 2 memory competed with short-term retrieval of List 1. These results demonstrate the dynamic nature of memory over time and the impact of environmental context at different stages of memory processing.  相似文献   

5.
Retrieving a consolidated memory--by exposing an animal to the learned stimulus but not to the associated reinforcement--leads to two opposing processes: one that weakens the old memory as a result of extinction learning, and another that strengthens the old, already-consolidated memory as a result of some less well-understood form of learning. This latter process of memory strengthening is often referred to as "reconsolidation", since protein synthesis can inhibit this form of memory formation. Although the behavioral phenomena of the two antagonizing forms of learning are well documented, the mechanisms behind the corresponding processes of memory formation are still quite controversial. Referring to results of extinction/reconsolidation experiments in honeybees, we argue that two opposing learning processes--with their respective consolidation phases and memories--are initiated by retrieval trials: extinction learning and reminder learning, the latter leading to the phenomenon of spontaneous recovery from extinction, a process that can be blocked with protein synthesis inhibition.  相似文献   

6.
Reconsolidation of declarative memory in humans   总被引:1,自引:0,他引:1       下载免费PDF全文
The reconsolidation hypothesis states that a consolidated memory could again become unstable and susceptible to facilitation or impairment for a discrete period of time after a reminder presentation. The phenomenon has been demonstrated in very diverse species and types of memory, including the human procedural memory of a motor skill task but not the human declarative one. Here we provide evidence for both consolidation and reconsolidation in a paired-associate learning (i.e., learning an association between a cue syllable and the respective response syllable). Subjects were given two training sessions with a 24-h interval on distinct verbal material, and afterward, they received at testing two successive retrievals corresponding to the first and second learning, respectively. Two main results are noted. First, the first acquired memory was impaired when a reminder was presented 5 min before the second training (reconsolidation), and also when the second training was given 5 min instead of 24 h after the first one (consolidation). Second, the first retrieval proved to influence negatively on the later one (the retrieval-induced forgetting [RIF] effect), and we used the absence of this RIF effect as a very indicator of the target memory impairment. We consider the demonstration of reconsolidation in human declarative memory as backing the universality of this phenomenon and having potential clinical relevance. On the other hand, we discuss the possibility of using the human declarative memory as a model to address several key topics of the reconsolidation hypothesis.  相似文献   

7.
已有动物和人类研究均表明, 通过记忆的再巩固更新机制能有效削弱新形成的条件性恐惧记忆(1天), 并且存在线索选择性特点。然而创伤后应激障碍(PTSD)往往在形成相当一段时间后才能得到治疗, 且现实生活中人们通常一次习得对多个线索的恐惧。因此找到针对多线索创伤记忆的有效治疗方法显得尤为重要。目前未有人研究远期恐惧记忆的再巩固更新机制是否存在线索选择性特点。为探究远期恐惧记忆(>7天)的再巩固更新机制是否同样存在线索选择性特点, 本研究采用被试内实验设计, 以皮肤电作为恐惧反应指标, 多个线索作为条件刺激进行恐惧习得, 习得14天后给被试单独呈现一个线索进行恐惧记忆提取, 10分钟后进行消退训练, 24小时后对不同线索进行自发恢复测试。结果显示:未提取线索的自发恢复程度显著高于提取线索。说明远期记忆(14天)的再巩固更新机制同样存在线索选择性特点, 并确认了提取消退作为一种行为手段对远期恐惧记忆再巩固进行干预的有效性, 对临床干预具有一定指导意义。  相似文献   

8.
Understanding the dynamics of memory change is one of the current challenges facing cognitive neuroscience. Recent animal work on memory reconsolidation shows that memories can be altered long after acquisition. When reactivated, memories can be modified and require a restabilization (reconsolidation) process. We recently extended this finding to human episodic memory by showing that memory reactivation mediates the incorporation of new information into existing memory. Here we show that the spatial context plays a unique role for this type of memory updating: Being in the same spatial context during original and new learning is both necessary and sufficient for the incorporation of new information into existing episodic memories. Memories are automatically reactivated when subjects return to an original learning context, where updating by incorporating new contents can occur. However, when in a novel context, updating of existing memories does not occur, and a new episodic memory is created instead.  相似文献   

9.
In previous experiments on contextual memory, we proposed that the unreinforced re-exposure to the learning context (conditioned stimulus, CS) acts as a switch guiding the memory course toward reconsolidation or extinction, depending on reminder duration. This proposal implies that the system computes the total exposure time to the context, from CS onset to CS offset, and therefore, that the reminder presentation must be terminated for the switching mechanism to become operative. Here we investigated to what extent this requirement is necessary, and we explored the relation between diverse phases in the reconsolidation and extinction processes. We used the contextual memory model of the crab Chasmagnathus which involves an association between the learning context (CS) and a visual danger stimulus (unconditioned stimulus, US). Administration of cycloheximide was used to test the lability state of memory at different time points. The results show that two factors, no-reinforcement during the reminder (i.e., CS re-exposure) and CS offset are the necessary conditions for both processes to occur. Regardless of the reminder duration, memory retrieved by unreinforced CS re-exposure emerges intact and consolidated when tested before CS offset, suggesting that neither reconsolidation nor extinction is concomitant with CS re-exposure. Either process could only be triggered once the definitive mismatch between CS and US is confirmed by CS termination without the expected reinforcement.  相似文献   

10.
The specificity and independence of two successively established memories were assessed in two studies with 6-month-olds. On different days, infants learned two paired-associate tasks, each involving a specific cue-response pair, in a common distinctive context. Retention of each pair was tested either 3 days later, when both memories were still highly accessible (Experiment 1), or 22 days later, when a reminder was necessary to reactivate them (Experiment 2). In both instances, infants produced only the response associated with the test cue; neither retroactive nor proactive interference occurred. Surprisingly, the cue from one task indirectly reactivated the forgotten memory of the other task, revealing that they were linked in an associative network.  相似文献   

11.
It has been suggested that retrieval during a nonreinforced test induces reconsolidation instead of extinction of the mnemonic trace. Reconsolidation would preserve the original memory from the labilization induced by its nonreinforced recall through a hitherto uncharacterized mechanism requiring protein synthesis. Given the importance that such a process would have in terms of maintaining, as part of the animal behavioral repertoire, a learned response that has been devalued by experience, we analyzed its existence for the memory associated with a one-trial, step-down inhibitory avoidance task (IA), a memory whose consolidation and extinction require protein synthesis in the CA1 region of the dorsal hippocampus (CA1) and involve the participation of the basolateral amygdala (BLA) and entorhinal cortex (ENT). Rats were trained in IA, and 24 h later they were submitted either to a pure reactivation session (retrieval without stepping down), which was unable by itself to initiate extinction of the avoidance response, or to a second training session. Fifteen minutes before or 3 h after either the reactivation or the retraining sessions, animals were infused with the protein synthesis inhibitor anisomycin (ANI) into CA1, BLA, or ENT. Contrary to the prediction of the reconsolidation hypothesis, none of these treatments affected subsequent memory retention. Because reconsolidation is regarded to be a direct consequence of retrieval, one would expect that, when given before a retention test or a pure reactivation session, enhancers of memory expression should permanently improve retention and, therefore, facilitate retrieval both in that and in subsequent sessions. Using two well-known retrieval enhancers, noradrenaline and adrenocorticotropin(1-24), we could not find any evidence suggestive of reconsolidation. Hence, our results indicate that there is no retrieval-induced, protein synthesis-dependent process that would cause reconsolidation of IA memory.  相似文献   

12.
This series of experiments examined the involvement of the dopamine D1 receptor antagonist, SCH23390, on memory reconsolidation following reminder-activated retrieval. Day-old male New HampshirexWhite Leghorn chicks were trained on a single trial passive avoidance task. A dose of 0.5 mg/kg of SCH23390 was administered subcutaneously 5 min before reminder trials, which were presented at 30, 60, and 90 min following training. Memory deficits were observed when reminder trials were presented at 30 and 60 min following training, but not when a reminder was presented at 90 min. No effect on memory retention was observed when reminder trials were not presented, suggesting that reconsolidation mechanisms were both contingent on the presentation of the reminder and independent of the consolidation process. Following a reminder presented at 60 min post-training, deficits in memory retention emerged between 45 and 60 min. The deficit was prolonged, lasting for up until 48 h after reminder presentation. The results indicate an important role for the D1 receptor in reconsolidation processes.  相似文献   

13.
Lymnaea stagnalis were operantly conditioned to not perform aerial respiratory behaviour in a specific context (i.e. context-1). The memory for this learned response was reactivated 3 days later in context-1. During the 1 h reconsolidation period following memory reactivation, randomly picked snails were either maintained in context-1 or exposed to a new context (i.e. context-2). One hour later in the post-reconsolidation period, snails in context-1 were placed for 1 h in context-2 and vice-versa. In neither the hypoxic reconsolidation nor the post reconsolidation periods did snails receive a reinforcing stimulus when they opened their pneumostome. All snails were blindly tested for memory 24 h later period in context-2. Only those snails that had been exposed to context-2 during the reconsolidation period exhibited 'memory' for context-2. That is, memory infidelity was observed. Snails exposed to context-2 in only the post-reconsolidation period did not show memory for context-2. The immediate cooling of snails after their exposure to the new context in the reconsolidation period blocked the formation the implanted memory. Snails trained in context-1 and exposed to context-2 in the consolidation period only, also did not have memory for context-2. However, the memory for context-1 could still be recalled following successful implantation of the 'new' memory. All data presented here are consistent with the notion that during the reconsolidation process memory can be updated.  相似文献   

14.
ABSTRACT

Recent research has provided evidence for memory modifications when a post-reactivation treatment (e.g., drugs, new learning) interferes with the memory re-stabilisation (reconsolidation) process. This finding contradicts the long-standing consolidation theory and has high practical and theoretical implications. With an object-learning paradigm, it was shown that episodic memory is highly susceptible to interfering material presented after its reactivation [Hupbach, A., Gomez, R., Hardt, O., &; Nadel, L. (2007). Reconsolidation of episodic memories: A subtle reminder triggers integration of new information. Learning &; Memory, 14, 47–53. doi:10.1101/lm.365707]. The reactivation of a learned list (List 1) before a second learned list (List 2) led to intrusion errors from List 2 when trying to recall List 1, but not vice-versa. Their work has been widely cited and their findings have been explained according to reconsolidation theory. For the first time, we systematically explored the role of retrieval context as an alternative explanation for Hupbach’s results. Our results showed that the intrusion effect occurs independently of the retrieval context (Experiment 1). Additionally, even when the intrusion rate probability is increased (i.e., List 1 memory test is performed in the List 2 learning context), the groups that did not reactivate the original list did not commit intrusion errors (Experiment 2). In sum, we found that the intrusion effect critically depends on the presence of reactivation, discarding alternative interpretations of the results.  相似文献   

15.
We previously demonstrated that disrupting reconsolidation by pharmacological manipulations "deleted" the emotional expression of a fear memory in humans. If we are to target reconsolidation in patients with anxiety disorders, the disruption of reconsolidation should produce content-limited modifications. At the same time, the fear-erasing effects should not be restricted to the feared cue itself considering that fear generalization is a main characteristic of anxiety disorders. In Experiment I and Experiment I(b), we addressed these issues using a within-subject differential startle fear conditioning paradigm and a test of fear generalization. In Experiment II, we tested whether a behavioral approach targeting the reconsolidation through extinction learning was also effective in weakening the original fear memory. A behavioral procedure is evidently preferred over drug manipulations provided that similar effects can be obtained. Here, the extinction procedure subsequent to retrieval did not "erase" the emotional expression of the fear memory as the retrieval techniques (i.e., reminder shocks and reacquisition) unveiled a return of the startle fear response to the fear-relevant stimuli. In contrast, β-adrenergic receptor blockade during reconsolidation selectively deleted the fear-arousing aspects of the memory (i.e., startle fear response) along with its category-related information. The pharmacological manipulation rendered the core memory trace too weak to observe fear generalization after successful reacquisition. Hence, relearning following the disruption of reconsolidation seems to be qualitatively different from initial learning. Our findings demonstrate that disrupting reconsolidation by pharmacological manipulations, although selective, undermines the generalization of fear, a key feature of anxiety disorders.  相似文献   

16.
Reconsolidation is the process by which previously consolidated memories are stabilized after retrieval. Several lines of evidence indicate that glucocorticoids modulate distinct phases of learning and memory. These effects are considered to be mediated by mineralocorticoid receptors and glucocorticoid receptors (GRs), which display a high concentration and distinct distribution in the hippocampus. The role of glucocorticoid system in fear memory reconsolidation is the subject of some controversy. Moreover, we found no studies that assessed the role of hippocampal GRs in fear memory reconsolidation. Here, we investigated the effect of GR blockade on fear memory reconsolidation in rats. Rats were trained and tested in an inhibitory avoidance task. Intrahippocampal or systemic administration of the GR antagonist RU38486 immediately following memory reactivation produced a deficit in post-retrieval long-term memory that persisted over test sessions, and memory did not re-emerge following a footshock reminder. These results indicate that hippocampal GRs are required for reconsolidation of fear-based memory.  相似文献   

17.
巩固的记忆被提取后,进入不稳定状态,再重新稳定下来,这个过程称为记忆再巩固。本文首先阐述人类记忆再巩固主要研究方法和经典范式,梳理记忆再巩固在人类恐惧记忆和情景记忆两个方面的相关研究,并从认知神经科学角度整理记忆再巩固的加工机制。然后总结记忆再巩固应用于创伤性应激障碍和药物成瘾等心理障碍临床治疗的相关文献。最后本文提出未来研究的方向和建议,希冀对人类记忆再巩固的理论研究和临床应用提供新思路。  相似文献   

18.
Persistent drug seeking/taking behavior involves the consolidation of memory. With each drug use, the memory may be reactivated and reconsolidated to maintain the original memory. During reactivation, the memory may become labile and susceptible to disruption; thus, molecules involved in plasticity should influence acquisition and/or reconsolidation. Recently, matrix metalloproteinases (MMPs) have been shown to influence neuronal plasticity, presumably by their regulation of extracellular matrix (ECM) molecules involved in synaptic reorganization during learning. We hypothesized that inhibition of MMP activity would impair the acquisition and/or reconsolidation of cocaine-conditioned place preference (CPP) in rats. Intracerebral ventricular (i.c.v.) microinjection of a broad spectrum MMP inhibitor, FN-439, prior to cocaine training suppressed acquisition of CPP and attenuated cocaine-primed reinstatement in extinguished animals. In a separate experiment, the cocaine memory was reactivated on two consecutive days with a cocaine priming injection. On these two days, artificial cerebral spinal fluid (aCSF) or FN-439 was administered either 30 min prior to or 1 min after cocaine-primed reinstatement sessions. Infusion of FN-439 partially impaired retrieval of the cocaine-associated context when given 30 min prior to cocaine. In both groups, however, FN-439 suppressed reinstatement compared with controls on the third consecutive test for cocaine-primed reinstatement, when no FN-439 was given. Control experiments demonstrated that two injections of FN-439 + cocaine given in the home cage, or of FN-439 + saline priming injections in the CPP chambers did not disrupt subsequent cocaine-primed reinstatement. These results show for the first time that (1) MMPs play a critical role in acquisition and reconsolidation of cocaine-induced CPP, and (2) rats demonstrate apparent disruption of reconsolidation by an MMP inhibitor after extinction and while they are under the influence of cocaine during reinstatement.  相似文献   

19.
Reconsolidation theory states that memories are labilized through reactivation, making them prone to change, before being re-consolidated. When information in memory requires updating, reconsolidation theory therefore predicts that reminders of previously learned information should facilitate updating of that information and should thus improve memory for the updated information. In two experiments, we tested this prediction by investigating memory for word pairs over a short time-scale. Participants studied word pairs (A–B), some of which were subsequently updated with word pairs that shared the first word (A–C). Half of the A–C pairs received a pre-study reminder of the first word in the pair so as to reactivate and labilize A–B memory. In a recognition memory test targeting the A–C list, reminders by and large had no effect on memory. Results thus failed to support the predictions of reconsolidation theory.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号