首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Computational metaphors for determining the orientation of planar surfaces represented in line drawings have exploited a postulate that often surfaces are rectangular. Previous research implies that people follow such logic with real surfaces in ecological viewing. However, this research is problematic methodologically and some research does not directly address the issue. The stimuli used in this study were rectangular and trapezoidal; the latter shape was used to mislead with regard to orientation under the rectangularity postulate. Viewing conditions were monocular and binocular, with and without observer movement. The results suggest that the rectangularity postulate was important under stationary monocular viewing but diminished with movement and was not apparent during binocular viewing. General arguments about the importance of secondary depth cues in ecological viewing are developed.  相似文献   

2.
Computational metaphors for determining the orientation of planar surfaces represented in line drawings have exploited a postulate that often surfaces are rectangular. Previous research implies that people follow such logic with real surfaces in ecological viewing. However, this research is problematic methodologically and some research does not directly address the issue. The stimuli used in this study were rectangular and trapezoidal; the latter shape was used to mislead with regard to orientation under the rectangularity postulate. Viewing conditions were monocular and binocular, with and without observer movement. The results suggest that the rectangularity postulate was important under stationary monocular viewing but diminished with movement and was not apparent during binocular viewing. General arguments about the importance of secondary depth cues in ecological viewing are developed.  相似文献   

3.
Reinhardt-Rutland AH 《Perception》1999,28(11):1361-1371
The perceived slant of a surface relative to the frontal plane can be reduced when the surface is viewed through a frame between the observer and the surface. Aspects of this framing effect were investigated in three experiments in which observers judged the orientations-in-depth of rectangular and trapezoidal surfaces which were matched for pictorial depth. In experiments 1 and 2, viewing was stationary-monocular. In experiment 1, a frontal rectangular frame was present or absent during viewing. The perceived slants of the surfaces were reduced in the presence of the frame; the reduction for the trapezoidal surface was greater, suggesting that conflict in stimulus information contributes to the phenomenon. In experiment 2, the rectangular frame was either frontal or slanted; in a third condition, a frame was trapezoidal and frontal. The conditions all elicited similar results, suggesting that the framing effect is not explained by pictorial perception of the display, or by assimilation of the surface orientation to the frame orientation. In experiment 3, viewing was moving-monocular to introduce motion parallax; the framing effect was reduced, being appreciable only for a trapezoidal surface. The results are related to other phenomena in which depth perception of points in space tends towards a frontal plane; this frontal-plane tendency is attributed to heavy experimental demands, mainly concerning impoverished, conflicting, and distracting information.  相似文献   

4.
Many objects in natural scenes have textures on their surfaces. Contrast of the texture surfaces (the texture contrast) reduces when the viewing distance increases. Similarly, contrast between the surfaces of the objects and the background (the area contrast) reduces when the viewing distance increases. The texture contrast and the area contrast were defined by the contrast between random dots, and by the contrast between the average luminance of the dot pattern and the luminance of the background, respectively. To examine how these two types of contrast influence depth perception, we ran two experiments. In both experiments two areas of random-dot patterns were presented against a uniform background, and participants rated relative depth between the two areas. We found that the rated depth of the patterned areas increased with increases in texture contrast. Furthermore, the effect of the texture contrast on depth judgment increased when the area contrast became low.  相似文献   

5.
Object and observer motion in the perception of objects by infants   总被引:1,自引:0,他引:1  
Sixteen-week-old human infants distinguish optical displacements given by their own motion from displacements given by moving objects, and they use only the latter to perceive the unity of partly occluded objects. Optical changes produced by moving the observer around a stationary object produced attentional levels characteristic of stationary observers viewing stationary displays and much lower than those shown by stationary observers viewing moving displays. Real displacements of an object with no subject-relative displacement, produced by moving an object so as to maintain a constant relation to the moving observer, evoked attentional levels that were higher than with stationary displays and more characteristic of attention to moving displays, a finding suggesting detection of the real motion. Previously reported abilities of infants to perceive the unity of partly occluded objects from motion information were found to depend on real object motion rather than on optical displacements in general. The results suggest that object perception depends on registration of the motions of surfaces in the three-dimensional layout.  相似文献   

6.
Pinna and Brelstaff (2000 Vision Research 40 2091-2096) reported a motion illusion on viewing two concentric circles consisting of quadrangular components with black and white sides on a grey background. Our results suggest that the illusion is based on the integration of motion signals derived from oblique components, and on the consistency in the direction among those components. Furthermore, arrays of these oblique components can elicit the perception of motion not only for the oblique components themselves, but also for other objects in the picture. We propose that the motion illusion depends not only upon detection of the illusory motion signal at each local oblique component, but also upon the accumulation of the signal all over the stimulus configuration.  相似文献   

7.
Can people react to objects in their visual field that they do not consciously perceive? We investigated how visual perception and motor action respond to moving objects whose visibility is reduced, and we found a dissociation between motion processing for perception and for action. We compared motion perception and eye movements evoked by two orthogonally drifting gratings, each presented separately to a different eye. The strength of each monocular grating was manipulated by inducing adaptation to one grating prior to the presentation of both gratings. Reflexive eye movements tracked the vector average of both gratings (pattern motion) even though perceptual responses followed one motion direction exclusively (component motion). Observers almost never perceived pattern motion. This dissociation implies the existence of visual-motion signals that guide eye movements in the absence of a corresponding conscious percept.  相似文献   

8.
Two experiments investigated infants’ sensitivity to familiar size as information for the distances of objects with which they had had only brief experience. Each experiment had two phases: a familiarization phase and a test phase. During the familiarization phase, the infant played with a pair of different-sized objects for 10 min. During the test phase, a pair of objects, identical to those seen in the familiarization phase but now equal in size, were presented to the infant at a fixed distance under monocular or binocular viewing conditions. In the test phase of Experiment 1, 7-month-old infants viewing the objects monocularly showed a significant preference to reach for the object that resembled the smaller object in the familiarization phase. Seven-month-old infants in the binocular viewing condition reached equally to the two test phase objects. These results indicate that, in the monocular condition, the 7-month-olds used knowledge about the objects’ sizes, acquired during the familiarization phase, to perceive distance from the test objects’ visual angles, and that they reached preferentially for the apparently nearer object. The lack of a reaching preference in the binocular condition rules out interpretations of the results not based on the objects’ perceived distances. The results, therefore, indicate that 7-month-old infants can use memory to mediate spatial perception. The implications of this finding for the debate between direct and indirect theories of visual perception are discussed. In the test phase of Experiment 2,5-month-old infants viewing the objects monocularly showed no reaching preference. These infants, therefore, showed no evidence of sensitivity to familiar size as distance information.  相似文献   

9.
To examine the relationship between visual motion processing for perception and pursuit, we measured the pursuit eye-movement and perceptual responses to the same complex-motion stimuli. We show that humans can both perceive and pursue the motion of line-figure objects, even when partial occlusion makes the resulting image motion vastly different from the underlying object motion. Our results show that both perception and pursuit can perform largely accurate motion integration, i.e. the selective combination of local motion signals across the visual field to derive global object motion. Furthermore, because we manipulated perceived motion while keeping image motion identical, the observed parallel changes in perception and pursuit show that the motion signals driving steady-state pursuit and perception are linked. These findings disprove current pursuit models whose control strategy is to minimize retinal image motion, and suggest a new framework for the interplay between visual cortex and cerebellum in visuomotor control.  相似文献   

10.
Identifying contours from occlusion events   总被引:1,自引:0,他引:1  
Surface contours specified by occlusion events that varied in density, velocity, and type of motion (rotation or translation) were examined in four experiments. As a fourth experimental factor, there were both figure-motion trials (the occluding surface moved over a stationary background) and background-motion trials (the background moved behind a stationary surface) in each experiment. Displays contained line patterns and rotary motion (Experiment 1), line patterns and translatory motion (Experiment 2), textured surfaces and rotary motion (Experiment 3), and textured surfaces and translatory motion (Experiment 4). Results indicate that contour identifications are more accurate with translation than with rotation, and that background-motion trials are generally easier than figure-motion trials. Although density in all experiments affected identifications in both background- and figure-motion trials, velocity did so in Experiment 4 only. In Experiments 1, 2, and 3, velocity affected identifications in background-motion trials but not in figure-motion trials. In Experiments 3 and 4, the rate of accretion and deletion of texture was a poor predictor of identification accuracy. These results are not consistent with previous accounts of contour perception from occlusion events, and may reflect an involvement of ocular pursuit as a mechanism for registering contour information.  相似文献   

11.
The three-dimensional interpretation of two-dimensional images was studied by using quadrilateral patterns, and some relationships between their structure, depth, and shape interpretations were analyzed under various viewing conditions. We defined rectangular and nonrectangular viewing conditions as follows: the viewing condition in which the quadrilateral, including parallel sides, could be a projection from a rectangle and the viewing condition in which it could not be so. For 9 subjects, 10 measurements were made in each experiment. Analysis showed that a pair of parallel sides of a quadrilateral were viewed as parallel to the viewer's forehead when the sides were horizontal in the image plane and were seen as slanting in depth if they were slanted in the image plane. The quadrilateral composed of parallel and nonparallel sides was perceived as rectangular when viewed with foveal vision even though under the nonrectangular viewing condition, if that viewing condition was not so different from the rectangular viewing condition. The quadrilateral did not appear to be rectangular when viewed in peripheral vision even though the rectangular viewing condition was used.  相似文献   

12.
In principle, information for 3-D motion perception is provided by the differences in position and motion between left- and right-eye images of the world. It is known that observers can precisely judge between different 3-D motion trajectories, but the accuracy of binocular 3-D motion perception has not been studied. The authors measured the accuracy of 3-D motion perception. In 4 different tasks, observers were inaccurate, overestimating trajectory angle, despite consistently choosing similar angles (high precision). Errors did not vary consistently with target distance, as would be expected had inaccuracy been due to misestimates of viewing distance. Observers appeared to rely strongly on the lateral position of the target, almost to the exclusion of the use of depth information. For the present tasks, these data suggest that neither an accurate estimate of 3-D motion direction nor one of passing distance can be obtained using only binocular cues to motion in depth. ((c) 2003 APA, all rights reserved)  相似文献   

13.
Four experiments investigated the relation between the development of binocular vision and infant spatial perception. Experiments 1 and 2 compared monocular and binocular depth perception in 4- and 5-month-old infants. Infants in both age groups reached more consistently for the nearer of two objects under binocular viewing conditions than under monocular viewing conditions. Experiments 3 and 4 investigated whether the superiority of binocular depth perception in 4-month-olds is related to the development of sensitivity to binocular disparity. Under binocular viewing conditions in Experiment 3, infants identified as disparity-sensitive reached more consistently for the nearer object than did infants identified as disparity-insensitive. The two groups' performances did not differ under monocular viewing conditions. These results suggest that, binocularly, the disparity-sensitive infants perceived the objects' distances more accurately than did the disparity-insensitive infants. In Experiment 4, infants were habituated to an object, then presented with the same object and a novel object that differed only in size. Disparity-sensitive infants showed size constancy by recovering from habituation when viewing the novel object. Disparity-insensitive infants did not show clear evidence of size constancy. These findings suggest that the development of sensitivity to binocular disparity is accompanied by a substantial increase in the accuracy of infant spatial perception.  相似文献   

14.
Twenty-seven university students judged whether each of 128 drawings of parallelopipeds appeared to represent three-dimensional rectangular boxes. Half the pictures could not geometrically have been projections of rectangular boxes. The null hypothesis that Ss’ judgments were unrelated to geometry was rejected at the .001 level of significance, and the correlation between Ss’ judgments and perfect discrimination averaged .86 over three variations of the experiment. The results support a general hypothesis about the perception of simple space forms according to which viewers impose geometric constraints, such as rectangularity and symmetry, but only when the constraints are projectively possible.  相似文献   

15.
Monocular depth perception was compared with binocular depth perception in 5- and 7-month-old infants. Reaching was used as the dependent measure. Two objects, identical except in size, were presented simultaneously to each infant. The smaller object was within reach for the infants while the larger object was just beyond reach. The two objects subtended equal visual angles from the infants' observation point. With binocular presentation, 96% of the 7-month-olds' reaches and 89% of the 5-month-olds' reaches were for the nearer object. With monocular presentation, 58% of the 7-month-olds' reaches and 65% of the 5-month-olds' reaches were for the nearer object. The reaching preferences observed in the monocular condition indicated sensitivity to monocular depth information (motion parallax, accommodation, and relative size information were available). Binocular viewing, however, resulted in a far more consistent tendency to reach for the nearer object. This result suggests that the infants' perception of the objects' distances was more veridical in the binocular condition than in the monocular condition.  相似文献   

16.
Recent studies have shown that lack of control induces illusory pattern perception. In this study, we demonstrate that lacking control also affected identification responses to degraded pictures of visual objects. As compared with control participants, participants in whom lack of control was experimentally induced produced identification responses to visual objects at a significantly higher level of degradation of the stimulus. Lacking control did not influence accuracy of identification, since the effect was present for both correct and incorrect identification responses, and did not encourage pure random guessing. Our results indicate that lacking control makes individuals more prone to achieve visual closure by attempting earlier identifications of perceptually degraded visual objects. Possible mechanisms involved in this effect are discussed.  相似文献   

17.
A display of two objects at different distances was presented to 10 observers, who were requested in two experiments to match the width of the more distant (comparison) object to the width of the nearer (standard) one under conditions permitting monocular observation and lateral head motion. The matched width of the comparison object was considered a measure of the effectiveness of movement parallax. The effectiveness of movement parallax decreases with increasing angular separation of the objects and with increasing background distance. A background without visible texture leads to a better perception of depth between two objects than a textured background The results can be explained by postulating that, whenever the detectability of motion is enhanced, i.e., the threshold for the detection of motion is lowered, the effectiveness of movement parallax as a cue to depth is increased.  相似文献   

18.
The stream/bounce display represents an ambiguous motion event in which two identical visual objects move toward one another and the objects overlap completely before they pass each another. In our perception, they can be interpreted as either streaming past one another or bouncing off each other. Previous studies have shown that the streaming percept of the display is generic for humans, suggesting the inertial nature of the motion integration process. In this study, chimpanzees took part in behavioral experiments using an object-tracking task to reveal the characteristics of their stream/bounce perception. Chimpanzees did not show a tendency toward a dominant "stream" perception of the stream/bounce stimulus. However, depth cues, such as X-junctions and local motion coherence, did promote the stream percept in chimpanzees. These results suggest both similarities and differences between chimpanzees and humans with respect to motion integration and object individuation processes.  相似文献   

19.
ABSTRACT

Angular direction is a source of information about the distance to floor-level objects that can be extracted from brief glimpses (near one's threshold for detection). Age and set size are two factors known to impact the viewing time needed to directionally localize an object, and these were posited to similarly govern the extraction of distance. The question here was whether viewing durations sufficient to support object detection (controlled for age and set size) would also be sufficient to support well-constrained judgments of distance. Regardless of viewing duration, distance judgments were more accurate (less biased towards underestimation) when multiple potential targets were presented, suggesting that the relative angular declinations between the objects are an additional source of useful information. Distance judgments were more precise with additional viewing time, but the benefit did not depend on set size and accuracy did not improve with longer viewing durations. The overall pattern suggests that distance can be efficiently derived from direction for floor-level objects. Controlling for age-related differences in the viewing time needed to support detection was sufficient to support distal localization but only when brief and longer glimpse trials were interspersed. Information extracted from longer glimpse trials presumably supported performance on subsequent trials when viewing time was more limited. This outcome suggests a particularly important role for prior visual experience in distance judgments for older observers.  相似文献   

20.
Stationary objects in a stereogram can appear to move when viewed with lateral head movements. This illusory motion can be explained by the motion-distance invariance hypothesis, which states that illusory motion covaries with perceived depth in accordance with the geometric relationship between the position of the stereo stimuli and the head. We examined two predictions based on the hypothesis. In Experiment 1, illusory motion was studied while varying the magnitude of binocular disparity and the magnitude of lateral head movement, holding viewing distance constant. In Experiment 2, illusory motion was studied while varying binocular disparity and viewing distance, holding magnitude of head movement constant. Ancillary measures of perceived depth, perceived viewing distance, and perceived magnitude of lateral head movement were also obtained. The results from the two experiments show that the extent of illusory motion varies as a function of perceived depth, supporting the motion-distance invariance hypothesis. The results also show that the extent of illusory motion is close to that predicted from the geometry in crossed disparity conditions, whereas it is greater than the predicted motion in uncrossed disparity conditions. Furthermore, predictions based on perceptual variables were no more accurate than predictions based on geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号